High-performing neural network models of visual cortex benefit from high latent dimensionality.
Geometric descriptions of deep neural networks (DNNs) have the potential to uncover core representational principles of computational models in neuroscience. Here we examined the geometry of DNN models of visual cortex by quantifying the latent dimensionality of their natural image representations....
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2024-01-01
|
Series: | PLoS Computational Biology |
Online Access: | https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011792&type=printable |