High-performing neural network models of visual cortex benefit from high latent dimensionality.
Geometric descriptions of deep neural networks (DNNs) have the potential to uncover core representational principles of computational models in neuroscience. Here we examined the geometry of DNN models of visual cortex by quantifying the latent dimensionality of their natural image representations....
Main Authors: | Eric Elmoznino, Michael F Bonner |
---|---|
Format: | Article |
Sprog: | English |
Udgivet: |
Public Library of Science (PLoS)
2024-01-01
|
Serier: | PLoS Computational Biology |
Online adgang: | https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011792&type=printable |
Lignende værker
-
High-level visual prediction errors in early visual cortex
af: David Richter, et al.
Udgivet: (2024-11-01) -
High-level visual prediction errors in early visual cortex.
af: David Richter, et al.
Udgivet: (2024-11-01) -
Performance-optimized hierarchical models predict neural responses in higher visual cortex
af: Yamins, Daniel L. K., et al.
Udgivet: (2015) -
Organization of high-level visual cortex in human infants
af: Keil, Boris, et al.
Udgivet: (2017) -
An emerging view of neural geometry in motor cortex supports high-performance decoding
af: Sean M Perkins, et al.
Udgivet: (2025-02-01)