A new approach to characterize cardiac sodium storage by combining fluorescence photometry and magnetic resonance imaging in small animal research

Abstract Cardiac myocyte sodium (Na+) homoeostasis is pivotal in cardiac diseases and heart failure. Intracellular Na+ ([Na+]i) is an important regulator of excitation–contraction coupling and mitochondrial energetics. In addition, extracellular Na+ ([Na+]e) and its water-free storage trigger collag...

Full description

Bibliographic Details
Main Authors: Martin Christa, Franziska Dithmar, Tobias Weinaus, Michael Kohlhaas, Anahi-Paula Arias-Loza, Michelle Hofmann, Ibrahim A. Elabyad, Fabian T. Gutjahr, Christoph Maack, Wolfgang R. Bauer
Format: Article
Language:English
Published: Nature Portfolio 2024-01-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-024-52377-w
_version_ 1797274831417245696
author Martin Christa
Franziska Dithmar
Tobias Weinaus
Michael Kohlhaas
Anahi-Paula Arias-Loza
Michelle Hofmann
Ibrahim A. Elabyad
Fabian T. Gutjahr
Christoph Maack
Wolfgang R. Bauer
author_facet Martin Christa
Franziska Dithmar
Tobias Weinaus
Michael Kohlhaas
Anahi-Paula Arias-Loza
Michelle Hofmann
Ibrahim A. Elabyad
Fabian T. Gutjahr
Christoph Maack
Wolfgang R. Bauer
author_sort Martin Christa
collection DOAJ
description Abstract Cardiac myocyte sodium (Na+) homoeostasis is pivotal in cardiac diseases and heart failure. Intracellular Na+ ([Na+]i) is an important regulator of excitation–contraction coupling and mitochondrial energetics. In addition, extracellular Na+ ([Na+]e) and its water-free storage trigger collagen cross-linking, myocardial stiffening and impaired cardiac function. Therefore, understanding the allocation of tissue Na+ to intra- and extracellular compartments is crucial in comprehending the pathophysiological processes in cardiac diseases. We extrapolated [Na+]e using a three-compartment model, with tissue Na+ concentration (TSC) measured by in vivo 23Na-MRI, extracellular volume (ECV) data calculated from T1 maps, and [Na+]i measured by in vitro fluorescence microscopy using Na+ binding benzofuran isophthalate (SBFI). To investigate dynamic changes in Na+ compartments, we induced pressure overload (TAC) or myocardial infarction (MI) via LAD ligation in mice. Compared to SHAM mice, TSC was similar after TAC but increased after MI. Both TAC and MI showed significantly higher [Na+]i compared to SHAM (around 130% compared to SHAM). Calculated [Na+]e increased after MI, but not after TAC. Increased TSC after TAC was primarily driven by increased [Na+]i, but the increase after MI by elevations in both [Na+]i and [Na+]e.
first_indexed 2024-03-07T15:04:43Z
format Article
id doaj.art-d9de801c74594940856816ea78bd9281
institution Directory Open Access Journal
issn 2045-2322
language English
last_indexed 2024-03-07T15:04:43Z
publishDate 2024-01-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj.art-d9de801c74594940856816ea78bd92812024-03-05T18:58:55ZengNature PortfolioScientific Reports2045-23222024-01-0114111210.1038/s41598-024-52377-wA new approach to characterize cardiac sodium storage by combining fluorescence photometry and magnetic resonance imaging in small animal researchMartin Christa0Franziska Dithmar1Tobias Weinaus2Michael Kohlhaas3Anahi-Paula Arias-Loza4Michelle Hofmann5Ibrahim A. Elabyad6Fabian T. Gutjahr7Christoph Maack8Wolfgang R. Bauer9Comprehensive Heart Failure Center, University and University Hospital WürzburgComprehensive Heart Failure Center, University and University Hospital WürzburgComprehensive Heart Failure Center, University and University Hospital WürzburgComprehensive Heart Failure Center, University and University Hospital WürzburgComprehensive Heart Failure Center, University and University Hospital WürzburgComprehensive Heart Failure Center, University and University Hospital WürzburgComprehensive Heart Failure Center, University and University Hospital WürzburgExperimental Physics 5, University WürzburgComprehensive Heart Failure Center, University and University Hospital WürzburgComprehensive Heart Failure Center, University and University Hospital WürzburgAbstract Cardiac myocyte sodium (Na+) homoeostasis is pivotal in cardiac diseases and heart failure. Intracellular Na+ ([Na+]i) is an important regulator of excitation–contraction coupling and mitochondrial energetics. In addition, extracellular Na+ ([Na+]e) and its water-free storage trigger collagen cross-linking, myocardial stiffening and impaired cardiac function. Therefore, understanding the allocation of tissue Na+ to intra- and extracellular compartments is crucial in comprehending the pathophysiological processes in cardiac diseases. We extrapolated [Na+]e using a three-compartment model, with tissue Na+ concentration (TSC) measured by in vivo 23Na-MRI, extracellular volume (ECV) data calculated from T1 maps, and [Na+]i measured by in vitro fluorescence microscopy using Na+ binding benzofuran isophthalate (SBFI). To investigate dynamic changes in Na+ compartments, we induced pressure overload (TAC) or myocardial infarction (MI) via LAD ligation in mice. Compared to SHAM mice, TSC was similar after TAC but increased after MI. Both TAC and MI showed significantly higher [Na+]i compared to SHAM (around 130% compared to SHAM). Calculated [Na+]e increased after MI, but not after TAC. Increased TSC after TAC was primarily driven by increased [Na+]i, but the increase after MI by elevations in both [Na+]i and [Na+]e.https://doi.org/10.1038/s41598-024-52377-w
spellingShingle Martin Christa
Franziska Dithmar
Tobias Weinaus
Michael Kohlhaas
Anahi-Paula Arias-Loza
Michelle Hofmann
Ibrahim A. Elabyad
Fabian T. Gutjahr
Christoph Maack
Wolfgang R. Bauer
A new approach to characterize cardiac sodium storage by combining fluorescence photometry and magnetic resonance imaging in small animal research
Scientific Reports
title A new approach to characterize cardiac sodium storage by combining fluorescence photometry and magnetic resonance imaging in small animal research
title_full A new approach to characterize cardiac sodium storage by combining fluorescence photometry and magnetic resonance imaging in small animal research
title_fullStr A new approach to characterize cardiac sodium storage by combining fluorescence photometry and magnetic resonance imaging in small animal research
title_full_unstemmed A new approach to characterize cardiac sodium storage by combining fluorescence photometry and magnetic resonance imaging in small animal research
title_short A new approach to characterize cardiac sodium storage by combining fluorescence photometry and magnetic resonance imaging in small animal research
title_sort new approach to characterize cardiac sodium storage by combining fluorescence photometry and magnetic resonance imaging in small animal research
url https://doi.org/10.1038/s41598-024-52377-w
work_keys_str_mv AT martinchrista anewapproachtocharacterizecardiacsodiumstoragebycombiningfluorescencephotometryandmagneticresonanceimaginginsmallanimalresearch
AT franziskadithmar anewapproachtocharacterizecardiacsodiumstoragebycombiningfluorescencephotometryandmagneticresonanceimaginginsmallanimalresearch
AT tobiasweinaus anewapproachtocharacterizecardiacsodiumstoragebycombiningfluorescencephotometryandmagneticresonanceimaginginsmallanimalresearch
AT michaelkohlhaas anewapproachtocharacterizecardiacsodiumstoragebycombiningfluorescencephotometryandmagneticresonanceimaginginsmallanimalresearch
AT anahipaulaariasloza anewapproachtocharacterizecardiacsodiumstoragebycombiningfluorescencephotometryandmagneticresonanceimaginginsmallanimalresearch
AT michellehofmann anewapproachtocharacterizecardiacsodiumstoragebycombiningfluorescencephotometryandmagneticresonanceimaginginsmallanimalresearch
AT ibrahimaelabyad anewapproachtocharacterizecardiacsodiumstoragebycombiningfluorescencephotometryandmagneticresonanceimaginginsmallanimalresearch
AT fabiantgutjahr anewapproachtocharacterizecardiacsodiumstoragebycombiningfluorescencephotometryandmagneticresonanceimaginginsmallanimalresearch
AT christophmaack anewapproachtocharacterizecardiacsodiumstoragebycombiningfluorescencephotometryandmagneticresonanceimaginginsmallanimalresearch
AT wolfgangrbauer anewapproachtocharacterizecardiacsodiumstoragebycombiningfluorescencephotometryandmagneticresonanceimaginginsmallanimalresearch
AT martinchrista newapproachtocharacterizecardiacsodiumstoragebycombiningfluorescencephotometryandmagneticresonanceimaginginsmallanimalresearch
AT franziskadithmar newapproachtocharacterizecardiacsodiumstoragebycombiningfluorescencephotometryandmagneticresonanceimaginginsmallanimalresearch
AT tobiasweinaus newapproachtocharacterizecardiacsodiumstoragebycombiningfluorescencephotometryandmagneticresonanceimaginginsmallanimalresearch
AT michaelkohlhaas newapproachtocharacterizecardiacsodiumstoragebycombiningfluorescencephotometryandmagneticresonanceimaginginsmallanimalresearch
AT anahipaulaariasloza newapproachtocharacterizecardiacsodiumstoragebycombiningfluorescencephotometryandmagneticresonanceimaginginsmallanimalresearch
AT michellehofmann newapproachtocharacterizecardiacsodiumstoragebycombiningfluorescencephotometryandmagneticresonanceimaginginsmallanimalresearch
AT ibrahimaelabyad newapproachtocharacterizecardiacsodiumstoragebycombiningfluorescencephotometryandmagneticresonanceimaginginsmallanimalresearch
AT fabiantgutjahr newapproachtocharacterizecardiacsodiumstoragebycombiningfluorescencephotometryandmagneticresonanceimaginginsmallanimalresearch
AT christophmaack newapproachtocharacterizecardiacsodiumstoragebycombiningfluorescencephotometryandmagneticresonanceimaginginsmallanimalresearch
AT wolfgangrbauer newapproachtocharacterizecardiacsodiumstoragebycombiningfluorescencephotometryandmagneticresonanceimaginginsmallanimalresearch