Explainable Deep Learning: A Visual Analytics Approach with Transition Matrices
The non-transparency of artificial intelligence (AI) systems, particularly in deep learning (DL), poses significant challenges to their comprehensibility and trustworthiness. This study aims to enhance the explainability of DL models through visual analytics (VA) and human-in-the-loop (HITL) princip...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-03-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/12/7/1024 |