Logarithmically improved blow-up criteria for the 3D nonhomogeneous incompressible Navier-Stokes equations with vacuum

This article is devoted to the study of the nonhomogeneous incompressible Navier-Stokes equations in space dimension three. By making use of the "weakly nonlinear" energy estimate approach introduced by Lei and Zhou in [16], we establish two logarithmically improved blow-up criteria of...

Полное описание

Библиографические подробности
Главные авторы: Qianqian Hou, Xiaojing Xu, Zhuan Ye
Формат: Статья
Язык:English
Опубликовано: Texas State University 2016-07-01
Серии:Electronic Journal of Differential Equations
Предметы:
Online-ссылка:http://ejde.math.txstate.edu/Volumes/2016/192/abstr.html
Описание
Итог:This article is devoted to the study of the nonhomogeneous incompressible Navier-Stokes equations in space dimension three. By making use of the "weakly nonlinear" energy estimate approach introduced by Lei and Zhou in [16], we establish two logarithmically improved blow-up criteria of the strong or smooth solutions subject to vacuum for the 3D nonhomogeneous incompressible Navier-Stokes equations in the whole space R^3. This results extend recent regularity criterion obtained by Kim (2006) [13].
ISSN:1072-6691