A Finite Mixture GARCH Approach with EM Algorithm for Energy Forecasting Applications
Enhancing forecasting performance in terms of both the expected mean value and variance has been a critical challenging issue for energy industry. In this paper, the novel methodology of finite mixture Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) approach with Expectation–Maximi...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-04-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/14/9/2352 |