The Improvement and Comparison Study of Distance Metrics for Machine Learning Algorithms for Indoor Wi-Fi Localization
Accurate indoor positioning is crucial for many location-based services, but GPS accuracy is significantly reduced due to issues such as signal penetration and accuracy in indoor scenarios. In contrast, indoor Wi-Fi positioning is emerging as a promising alternative in the field. This study proposes...
Главный автор: | Xinyue Wang |
---|---|
Формат: | Статья |
Язык: | English |
Опубликовано: |
IEEE
2023-01-01
|
Серии: | IEEE Access |
Предметы: | |
Online-ссылка: | https://ieeexplore.ieee.org/document/10214587/ |
Схожие документы
-
Performance Comparison of WiFi and UWB Fingerprinting Indoor Positioning Systems
по: Giuseppe Caso, и др.
Опубликовано: (2018-01-01) -
Comprehensive Analysis of Applied Machine Learning in Indoor Positioning Based on Wi-Fi: An Extended Systematic Review
по: Vladimir Bellavista-Parent, и др.
Опубликовано: (2022-06-01) -
Wi‑Fi Indoor Localisation: A Deeper Insight Into Patterns in the Fingerprint Map Data
по: Mikuláš Muroň, и др.
Опубликовано: (2018-01-01) -
A Wi-Fi-Based Passive Indoor Positioning System via Entropy-Enhanced Deployment of Wi-Fi Sniffers
по: Poh Yuen Chan, и др.
Опубликовано: (2023-01-01) -
Research on Indoor 3D Positioning Algorithm Based on WiFi Fingerprint
по: Lixing Wang, и др.
Опубликовано: (2022-12-01)