Variational quantum approximate support vector machine with inference transfer

Abstract A kernel-based quantum classifier is the most practical and influential quantum machine learning technique for the hyper-linear classification of complex data. We propose a Variational Quantum Approximate Support Vector Machine (VQASVM) algorithm that demonstrates empirical sub-quadratic ru...

詳細記述

書誌詳細
主要な著者: Siheon Park, Daniel K. Park, June-Koo Kevin Rhee
フォーマット: 論文
言語:English
出版事項: Nature Portfolio 2023-02-01
シリーズ:Scientific Reports
オンライン・アクセス:https://doi.org/10.1038/s41598-023-29495-y