Variational quantum approximate support vector machine with inference transfer

Abstract A kernel-based quantum classifier is the most practical and influential quantum machine learning technique for the hyper-linear classification of complex data. We propose a Variational Quantum Approximate Support Vector Machine (VQASVM) algorithm that demonstrates empirical sub-quadratic ru...

Full beskrivning

Bibliografiska uppgifter
Huvudupphovsmän: Siheon Park, Daniel K. Park, June-Koo Kevin Rhee
Materialtyp: Artikel
Språk:English
Publicerad: Nature Portfolio 2023-02-01
Serie:Scientific Reports
Länkar:https://doi.org/10.1038/s41598-023-29495-y