Stable gonality is computable
Stable gonality is a multigraph parameter that measures the complexity of a graph. It is defined using maps to trees. Those maps, in some sense, divide the edges equally over the edges of the tree; stable gonality asks for the map with the minimum number of edges mapped to each edge of the tree. Thi...
主要な著者: | Ragnar Groot Koerkamp, Marieke van der Wegen |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Discrete Mathematics & Theoretical Computer Science
2019-06-01
|
シリーズ: | Discrete Mathematics & Theoretical Computer Science |
主題: | |
オンライン・アクセス: | https://dmtcs.episciences.org/4931/pdf |
類似資料
-
Destroying Multicolored Paths and Cycles in Edge-Colored Graphs
著者:: Nils Jakob Eckstein, 等
出版事項: (2023-03-01) -
Notes on Equitable Partitions into Matching Forests in Mixed Graphs and into $b$-branchings in Digraphs
著者:: Kenjiro Takazawa
出版事項: (2022-03-01) -
Destroying Bicolored $P_3$s by Deleting Few Edges
著者:: Niels Grüttemeier, 等
出版事項: (2021-06-01) -
On the shelling antimatroids of split graphs
著者:: Jean Cardinal, 等
出版事項: (2017-03-01) -
On the multipacking number of grid graphs
著者:: Laurent Beaudou, 等
出版事項: (2019-06-01)