Rich dynamics and functional organization on topographically designed neuronal networks in vitro

Summary: Neuronal cultures are a prominent experimental tool to understand complex functional organization in neuronal assemblies. However, neurons grown on flat surfaces exhibit a strongly coherent bursting behavior with limited functionality. To approach the functional richness of naturally formed...

Full description

Bibliographic Details
Main Authors: Marc Montalà-Flaquer, Clara F. López-León, Daniel Tornero, Akke Mats Houben, Tanguy Fardet, Pascal Monceau, Samuel Bottani, Jordi Soriano
Format: Article
Language:English
Published: Elsevier 2022-12-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004222019526
_version_ 1798006200856477696
author Marc Montalà-Flaquer
Clara F. López-León
Daniel Tornero
Akke Mats Houben
Tanguy Fardet
Pascal Monceau
Samuel Bottani
Jordi Soriano
author_facet Marc Montalà-Flaquer
Clara F. López-León
Daniel Tornero
Akke Mats Houben
Tanguy Fardet
Pascal Monceau
Samuel Bottani
Jordi Soriano
author_sort Marc Montalà-Flaquer
collection DOAJ
description Summary: Neuronal cultures are a prominent experimental tool to understand complex functional organization in neuronal assemblies. However, neurons grown on flat surfaces exhibit a strongly coherent bursting behavior with limited functionality. To approach the functional richness of naturally formed neuronal circuits, here we studied neuronal networks grown on polydimethylsiloxane (PDMS) topographical patterns shaped as either parallel tracks or square valleys. We followed the evolution of spontaneous activity in these cultures along 20 days in vitro using fluorescence calcium imaging. The networks were characterized by rich spatiotemporal activity patterns that comprised from small regions of the culture to its whole extent. Effective connectivity analysis revealed the emergence of spatially compact functional modules that were associated with both the underpinned topographical features and predominant spatiotemporal activity fronts. Our results show the capacity of spatial constraints to mold activity and functional organization, bringing new opportunities to comprehend the structure-function relationship in living neuronal circuits.
first_indexed 2024-04-11T12:52:18Z
format Article
id doaj.art-dc1c5d87702f4a6e985c5632b95ad74d
institution Directory Open Access Journal
issn 2589-0042
language English
last_indexed 2024-04-11T12:52:18Z
publishDate 2022-12-01
publisher Elsevier
record_format Article
series iScience
spelling doaj.art-dc1c5d87702f4a6e985c5632b95ad74d2022-12-22T04:23:11ZengElsevieriScience2589-00422022-12-012512105680Rich dynamics and functional organization on topographically designed neuronal networks in vitroMarc Montalà-Flaquer0Clara F. López-León1Daniel Tornero2Akke Mats Houben3Tanguy Fardet4Pascal Monceau5Samuel Bottani6Jordi Soriano7Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain; Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, SpainDepartament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain; Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, SpainLaboratory of Neural Stem Cells and Brain Damage, Institute of Neurosciences, University of Barcelona, E-08036 Barcelona, SpainDepartament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain; Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, SpainLaboratoire Matière et Systèmes Complexes, Université de Paris, UMR 7057 CNRS, Paris, France; University of Tübingen, Tübingen, Germany; Max Planck Institute for Biological Cybernetics, Tübingen, GermanyLaboratoire Matière et Systèmes Complexes, Université de Paris, UMR 7057 CNRS, Paris, FranceLaboratoire Matière et Systèmes Complexes, Université de Paris, UMR 7057 CNRS, Paris, FranceDepartament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain; Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain; Corresponding authorSummary: Neuronal cultures are a prominent experimental tool to understand complex functional organization in neuronal assemblies. However, neurons grown on flat surfaces exhibit a strongly coherent bursting behavior with limited functionality. To approach the functional richness of naturally formed neuronal circuits, here we studied neuronal networks grown on polydimethylsiloxane (PDMS) topographical patterns shaped as either parallel tracks or square valleys. We followed the evolution of spontaneous activity in these cultures along 20 days in vitro using fluorescence calcium imaging. The networks were characterized by rich spatiotemporal activity patterns that comprised from small regions of the culture to its whole extent. Effective connectivity analysis revealed the emergence of spatially compact functional modules that were associated with both the underpinned topographical features and predominant spatiotemporal activity fronts. Our results show the capacity of spatial constraints to mold activity and functional organization, bringing new opportunities to comprehend the structure-function relationship in living neuronal circuits.http://www.sciencedirect.com/science/article/pii/S2589004222019526NeuroscienceCell biologyNeural networks
spellingShingle Marc Montalà-Flaquer
Clara F. López-León
Daniel Tornero
Akke Mats Houben
Tanguy Fardet
Pascal Monceau
Samuel Bottani
Jordi Soriano
Rich dynamics and functional organization on topographically designed neuronal networks in vitro
iScience
Neuroscience
Cell biology
Neural networks
title Rich dynamics and functional organization on topographically designed neuronal networks in vitro
title_full Rich dynamics and functional organization on topographically designed neuronal networks in vitro
title_fullStr Rich dynamics and functional organization on topographically designed neuronal networks in vitro
title_full_unstemmed Rich dynamics and functional organization on topographically designed neuronal networks in vitro
title_short Rich dynamics and functional organization on topographically designed neuronal networks in vitro
title_sort rich dynamics and functional organization on topographically designed neuronal networks in vitro
topic Neuroscience
Cell biology
Neural networks
url http://www.sciencedirect.com/science/article/pii/S2589004222019526
work_keys_str_mv AT marcmontalaflaquer richdynamicsandfunctionalorganizationontopographicallydesignedneuronalnetworksinvitro
AT claraflopezleon richdynamicsandfunctionalorganizationontopographicallydesignedneuronalnetworksinvitro
AT danieltornero richdynamicsandfunctionalorganizationontopographicallydesignedneuronalnetworksinvitro
AT akkematshouben richdynamicsandfunctionalorganizationontopographicallydesignedneuronalnetworksinvitro
AT tanguyfardet richdynamicsandfunctionalorganizationontopographicallydesignedneuronalnetworksinvitro
AT pascalmonceau richdynamicsandfunctionalorganizationontopographicallydesignedneuronalnetworksinvitro
AT samuelbottani richdynamicsandfunctionalorganizationontopographicallydesignedneuronalnetworksinvitro
AT jordisoriano richdynamicsandfunctionalorganizationontopographicallydesignedneuronalnetworksinvitro