Linearized ADMM for Nonconvex Nonsmooth Optimization With Convergence Analysis
Linearized alternating direction method of multipliers (ADMM) as an extension of ADMM has been widely used to solve linearly constrained problems in signal processing, machine learning, communications, and many other fields. Despite its broad applications in nonconvex optimization, for a great numbe...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2019-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8704712/ |