Collecting public RGB-D datasets for human daily activity recognition
Human daily activity recognition has been a hot spot in the field of computer vision for many decades. Despite best efforts, activity recognition in naturally uncontrolled settings remains a challenging problem. Recently, by being able to perceive depth and visual cues simultaneously, RGB-D cameras...
Main Authors: | Hanbo Wu, Xin Ma, Zhimeng Zhang, Haibo Wang, Yibin Li |
---|---|
Formato: | Artigo |
Idioma: | English |
Publicado em: |
SAGE Publishing
2017-07-01
|
Colecção: | International Journal of Advanced Robotic Systems |
Acesso em linha: | https://doi.org/10.1177/1729881417709079 |
Registos relacionados
-
An End to End Framework With Adaptive Spatio-Temporal Attention Module for Human Action Recognition
Por: Shaocan Liu, et al.
Publicado em: (2020-01-01) -
Fall Detection in Videos With Trajectory-Weighted Deep-Convolutional Rank-Pooling Descriptor
Por: Zhimeng Zhang, et al.
Publicado em: (2019-01-01) -
HANDS: an RGB-D dataset of static hand-gestures for human-robot interaction
Por: Cristina Nuzzi, et al.
Publicado em: (2021-04-01) -
Hierarchical dynamic depth projected difference images–based action recognition in videos with convolutional neural networks
Por: Hanbo Wu, et al.
Publicado em: (2019-01-01) -
Gesture Recognition of RGB and RGB-D Static Images Using Convolutional Neural Networks
Por: Manju Khari, et al.
Publicado em: (2019-12-01)