Enabling Serverless Deployment of Large-Scale AI Workloads
We propose a set of optimization techniques for transforming a generic AI codebase so that it can be successfully deployed to a restricted serverless environment, without compromising capability or performance. These involve (1) slimming the libraries and frameworks (e.g., pytorch) used, down to pie...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9055400/ |