Million-scale data integrated deep neural network for phonon properties of heuslers spanning the periodic table

Abstract Existing machine learning potentials for predicting phonon properties of crystals are typically limited on a material-to-material basis, primarily due to the exponential scaling of model complexity with the number of atomic species. We address this bottleneck with the developed Elemental Sp...

Descrizione completa

Dettagli Bibliografici
Autori principali: Alejandro Rodriguez, Changpeng Lin, Hongao Yang, Mohammed Al-Fahdi, Chen Shen, Kamal Choudhary, Yong Zhao, Jianjun Hu, Bingyang Cao, Hongbin Zhang, Ming Hu
Natura: Articolo
Lingua:English
Pubblicazione: Nature Portfolio 2023-02-01
Serie:npj Computational Materials
Accesso online:https://doi.org/10.1038/s41524-023-00974-0