Identifying Tidal Disruption Events with an Expansion of the FLEET Machine-learning Algorithm

We present an expansion of FLEET, a machine-learning algorithm optimized to select transients that are most likely tidal disruption events (TDEs). FLEET is based on a random forest algorithm trained on both the light curves and host galaxy information of 4779 spectroscopically classified transients....

Full description

Bibliographic Details
Main Authors: Sebastian Gomez, V. Ashley Villar, Edo Berger, Suvi Gezari, Sjoert van Velzen, Matt Nicholl, Peter K. Blanchard, Kate. D. Alexander
Format: Article
Language:English
Published: IOP Publishing 2023-01-01
Series:The Astrophysical Journal
Subjects:
Online Access:https://doi.org/10.3847/1538-4357/acc535