Curing Process on Passivation Layer for Backside-Illuminated CMOS Image Sensor Application

We fabricated Al/Al<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>/Si and Al/HfO<sub>2</sub>/Si structures to optimize the passivation layer of a backside-illuminated (BSI) complementary metal oxide semiconductor (CMOS) image sensor (CIS), with the key prope...

Full description

Bibliographic Details
Main Authors: Jongseo Park, Kyeong-Keun Choi, Jehyun An, Bohyeon Kang, Hyeonseo You, Giryun Hong, Sung-Min Ahn, Rock-Hyun Baek
Format: Article
Language:English
Published: IEEE 2023-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10154031/
_version_ 1797634035869024256
author Jongseo Park
Kyeong-Keun Choi
Jehyun An
Bohyeon Kang
Hyeonseo You
Giryun Hong
Sung-Min Ahn
Rock-Hyun Baek
author_facet Jongseo Park
Kyeong-Keun Choi
Jehyun An
Bohyeon Kang
Hyeonseo You
Giryun Hong
Sung-Min Ahn
Rock-Hyun Baek
author_sort Jongseo Park
collection DOAJ
description We fabricated Al/Al<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>/Si and Al/HfO<sub>2</sub>/Si structures to optimize the passivation layer of a backside-illuminated (BSI) complementary metal oxide semiconductor (CMOS) image sensor (CIS), with the key properties of the newly developed high-<inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> passivation layer analyzed via border traps, interface traps, and fixed charges. In the first experiment using Al<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> bilayer-based structures, different thicknesses of SiO<sub>2</sub> were applied from 0 to 15 nm. The improvement in their properties was confirmed by applying forming gas annealing (FGA), a type of post-treatment, to all experimental systems. The first experiment results indicated that both the SiO<sub>2</sub> layer and FGA were effective for chemical passivation. However, a tradeoff occurred in the degree of improvement of the interface trap density (<inline-formula> <tex-math notation="LaTeX">$\text{D}_{\mathrm {it}}$ </tex-math></inline-formula>) and fixed-charge density (<inline-formula> <tex-math notation="LaTeX">$\text{Q}_{\mathrm {f}}$ </tex-math></inline-formula>) according to the SiO<sub>2</sub> layer thickness. Subsequently, in the second experiment using HfO<sub>2</sub> single-layer-based structures, FGA improved the border trap to a relatively poor extent compared to the first experiment. Nevertheless, FGA improved the electrical characteristics of the HfO<sub>2</sub> films without any side effects and results in optimal <inline-formula> <tex-math notation="LaTeX">$\text{D}_{\mathrm {it}}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\vert \text{Q}_{\mathrm {f}}/\text{q}\vert $ </tex-math></inline-formula> values of <inline-formula> <tex-math notation="LaTeX">$2.59 \times 10^{11}$ </tex-math></inline-formula> eV<inline-formula> <tex-math notation="LaTeX">$^{-1}$ </tex-math></inline-formula> cm<inline-formula> <tex-math notation="LaTeX">$^{-2}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$1.00 \times 10^{12}$ </tex-math></inline-formula> cm<inline-formula> <tex-math notation="LaTeX">$^{-2}$ </tex-math></inline-formula>, respectively, demonstrating its potential for the passivation layer in BSI CIS applications.
first_indexed 2024-03-11T12:03:06Z
format Article
id doaj.art-e07b7f67fbd54e48a5593a29775e33d9
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-03-11T12:03:06Z
publishDate 2023-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-e07b7f67fbd54e48a5593a29775e33d92023-11-08T00:01:38ZengIEEEIEEE Access2169-35362023-01-0111606606066710.1109/ACCESS.2023.328697610154031Curing Process on Passivation Layer for Backside-Illuminated CMOS Image Sensor ApplicationJongseo Park0https://orcid.org/0000-0003-2881-5650Kyeong-Keun Choi1https://orcid.org/0000-0002-4950-757XJehyun An2https://orcid.org/0000-0002-7008-6087Bohyeon Kang3https://orcid.org/0000-0001-8460-698XHyeonseo You4https://orcid.org/0000-0001-6008-5091Giryun Hong5https://orcid.org/0009-0003-9657-0744Sung-Min Ahn6https://orcid.org/0000-0001-7799-5374Rock-Hyun Baek7https://orcid.org/0000-0002-6175-8101Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of KoreaNational Institute for Nanomaterials Technology (NINT), Pohang University of Science and Technology (POSTECH), Pohang, Republic of KoreaDepartment of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of KoreaDepartment of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of KoreaDepartment of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of KoreaDepartment of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of KoreaDepartment of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of KoreaDepartment of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of KoreaWe fabricated Al/Al<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>/Si and Al/HfO<sub>2</sub>/Si structures to optimize the passivation layer of a backside-illuminated (BSI) complementary metal oxide semiconductor (CMOS) image sensor (CIS), with the key properties of the newly developed high-<inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> passivation layer analyzed via border traps, interface traps, and fixed charges. In the first experiment using Al<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> bilayer-based structures, different thicknesses of SiO<sub>2</sub> were applied from 0 to 15 nm. The improvement in their properties was confirmed by applying forming gas annealing (FGA), a type of post-treatment, to all experimental systems. The first experiment results indicated that both the SiO<sub>2</sub> layer and FGA were effective for chemical passivation. However, a tradeoff occurred in the degree of improvement of the interface trap density (<inline-formula> <tex-math notation="LaTeX">$\text{D}_{\mathrm {it}}$ </tex-math></inline-formula>) and fixed-charge density (<inline-formula> <tex-math notation="LaTeX">$\text{Q}_{\mathrm {f}}$ </tex-math></inline-formula>) according to the SiO<sub>2</sub> layer thickness. Subsequently, in the second experiment using HfO<sub>2</sub> single-layer-based structures, FGA improved the border trap to a relatively poor extent compared to the first experiment. Nevertheless, FGA improved the electrical characteristics of the HfO<sub>2</sub> films without any side effects and results in optimal <inline-formula> <tex-math notation="LaTeX">$\text{D}_{\mathrm {it}}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\vert \text{Q}_{\mathrm {f}}/\text{q}\vert $ </tex-math></inline-formula> values of <inline-formula> <tex-math notation="LaTeX">$2.59 \times 10^{11}$ </tex-math></inline-formula> eV<inline-formula> <tex-math notation="LaTeX">$^{-1}$ </tex-math></inline-formula> cm<inline-formula> <tex-math notation="LaTeX">$^{-2}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$1.00 \times 10^{12}$ </tex-math></inline-formula> cm<inline-formula> <tex-math notation="LaTeX">$^{-2}$ </tex-math></inline-formula>, respectively, demonstrating its potential for the passivation layer in BSI CIS applications.https://ieeexplore.ieee.org/document/10154031/Plasma-enhanced atomic layer depositionforming gas annealingCMOS image sensorsurface passivationSiO₂HfO₂
spellingShingle Jongseo Park
Kyeong-Keun Choi
Jehyun An
Bohyeon Kang
Hyeonseo You
Giryun Hong
Sung-Min Ahn
Rock-Hyun Baek
Curing Process on Passivation Layer for Backside-Illuminated CMOS Image Sensor Application
IEEE Access
Plasma-enhanced atomic layer deposition
forming gas annealing
CMOS image sensor
surface passivation
SiO₂
HfO₂
title Curing Process on Passivation Layer for Backside-Illuminated CMOS Image Sensor Application
title_full Curing Process on Passivation Layer for Backside-Illuminated CMOS Image Sensor Application
title_fullStr Curing Process on Passivation Layer for Backside-Illuminated CMOS Image Sensor Application
title_full_unstemmed Curing Process on Passivation Layer for Backside-Illuminated CMOS Image Sensor Application
title_short Curing Process on Passivation Layer for Backside-Illuminated CMOS Image Sensor Application
title_sort curing process on passivation layer for backside illuminated cmos image sensor application
topic Plasma-enhanced atomic layer deposition
forming gas annealing
CMOS image sensor
surface passivation
SiO₂
HfO₂
url https://ieeexplore.ieee.org/document/10154031/
work_keys_str_mv AT jongseopark curingprocessonpassivationlayerforbacksideilluminatedcmosimagesensorapplication
AT kyeongkeunchoi curingprocessonpassivationlayerforbacksideilluminatedcmosimagesensorapplication
AT jehyunan curingprocessonpassivationlayerforbacksideilluminatedcmosimagesensorapplication
AT bohyeonkang curingprocessonpassivationlayerforbacksideilluminatedcmosimagesensorapplication
AT hyeonseoyou curingprocessonpassivationlayerforbacksideilluminatedcmosimagesensorapplication
AT giryunhong curingprocessonpassivationlayerforbacksideilluminatedcmosimagesensorapplication
AT sungminahn curingprocessonpassivationlayerforbacksideilluminatedcmosimagesensorapplication
AT rockhyunbaek curingprocessonpassivationlayerforbacksideilluminatedcmosimagesensorapplication