On-Chip Trainable Spiking Neural Networks Using Time-To-First-Spike Encoding
Artificial Neural Networks (ANNs) have shown remarkable performance in various fields. However, ANN relies on the von-Neumann architecture, which consumes a lot of power. Hardware-based spiking neural networks (SNNs) inspired by a human brain have become an alternative with significantly low power c...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2022-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9737122/ |