Integrating Advanced Techniques: RFE-SVM Feature Engineering and Nelder-Mead Optimized XGBoost for Accurate Lung Cancer Prediction
Early detection of lung cancer is crucial for improving patient survival and reducing mortality. However, medical datasets often face challenges like irrelevant features and class imbalance, complicating accurate predictions. This study presents a comprehensive AI-powered lung cancer classification...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2025-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10857335/ |