Tracking Brand-Associated Polarity-Bearing Topics in User Reviews

AbstractMonitoring online customer reviews is important for business organizations to measure customer satisfaction and better manage their reputations. In this paper, we propose a novel dynamic Brand-Topic Model (dBTM) which is able to automatically detect and track brand-associated...

Full description

Bibliographic Details
Main Authors: Runcong Zhao, Lin Gui, Hanqi Yan, Yulan He
Format: Article
Language:English
Published: The MIT Press 2023-01-01
Series:Transactions of the Association for Computational Linguistics
Online Access:https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00555/115894/Tracking-Brand-Associated-Polarity-Bearing-Topics
Description
Summary:AbstractMonitoring online customer reviews is important for business organizations to measure customer satisfaction and better manage their reputations. In this paper, we propose a novel dynamic Brand-Topic Model (dBTM) which is able to automatically detect and track brand-associated sentiment scores and polarity-bearing topics from product reviews organized in temporally ordered time intervals. dBTM models the evolution of the latent brand polarity scores and the topic-word distributions over time by Gaussian state space models. It also incorporates a meta learning strategy to control the update of the topic-word distribution in each time interval in order to ensure smooth topic transitions and better brand score predictions. It has been evaluated on a dataset constructed from MakeupAlley reviews and a hotel review dataset. Experimental results show that dBTM outperforms a number of competitive baselines in brand ranking, achieving a good balance of topic coherence and uniqueness, and extracting well-separated polarity-bearing topics across time intervals.1
ISSN:2307-387X