Phase optimization of thermally actuated piezoresistive resonant MEMS cantilever sensors

<p>The asymmetric resonance response in thermally actuated piezoresistive cantilever sensors causes a need for optimization, taking parasitic actuation–sensing effects into account. In this work, two compensation methods based on Wheatstone bridge (WB) input voltage (<i>V</i>&l...

Full description

Bibliographic Details
Main Authors: A. Setiono, M. Fahrbach, J. Xu, M. Bertke, W. O. Nyang'au, G. Hamdana, H. S. Wasisto, E. Peiner
Format: Article
Language:English
Published: Copernicus Publications 2019-01-01
Series:Journal of Sensors and Sensor Systems
Online Access:https://www.j-sens-sens-syst.net/8/37/2019/jsss-8-37-2019.pdf
_version_ 1811310079165595648
author A. Setiono
A. Setiono
A. Setiono
M. Fahrbach
M. Fahrbach
J. Xu
J. Xu
M. Bertke
M. Bertke
W. O. Nyang'au
W. O. Nyang'au
W. O. Nyang'au
G. Hamdana
G. Hamdana
H. S. Wasisto
H. S. Wasisto
E. Peiner
E. Peiner
author_facet A. Setiono
A. Setiono
A. Setiono
M. Fahrbach
M. Fahrbach
J. Xu
J. Xu
M. Bertke
M. Bertke
W. O. Nyang'au
W. O. Nyang'au
W. O. Nyang'au
G. Hamdana
G. Hamdana
H. S. Wasisto
H. S. Wasisto
E. Peiner
E. Peiner
author_sort A. Setiono
collection DOAJ
description <p>The asymmetric resonance response in thermally actuated piezoresistive cantilever sensors causes a need for optimization, taking parasitic actuation–sensing effects into account. In this work, two compensation methods based on Wheatstone bridge (WB) input voltage (<i>V</i><sub>WB_in</sub>) adjustment and reference circuit involvement were developed and investigated to diminish those unwanted coupling influences. In the first approach, <i>V</i><sub>WB_in</sub> was increased, resulting in a higher current flowing through the WB piezoresistors as well as a temperature gradient reduction between the thermal actuator (heating resistor: HR) and the WB, which can consequently minimize the parasitic coupling. Nevertheless, increasing <i>V</i><sub>WB_in</sub> (e.g., from 1 to 3.3&thinsp;V) may also yield an unwanted increase in power consumption by more than 10 times. Therefore, a second compensation method was considered: i.e., a reference electronic circuit is integrated with the cantilever sensor. Here, an electronic reference circuit was developed, which mimics the frequency behavior of the parasitic coupling. By subtracting the output of this circuit from the output of the cantilever, the resonance response can thus be improved. Both simulated and measured data show optimized amplitude and phase characteristics around resonant frequencies of 190.17 and 202.32&thinsp;kHz, respectively. With this phase optimization in place, a phase-locked-loop (PLL) based system can be used to track the resonant frequency in real time, even under changing conditions of temperature (<i>T</i>) and relative humidity (RH), respectively. Finally, it is expected to enhance the sensitivity of such piezoresistive electro-thermal cantilever sensors under loading with any target analytes (e.g., particulate matter, gas, and humidity).</p>
first_indexed 2024-04-13T09:52:26Z
format Article
id doaj.art-e16b5aa32c7d4b24b4c55e27d9bf55be
institution Directory Open Access Journal
issn 2194-8771
2194-878X
language English
last_indexed 2024-04-13T09:52:26Z
publishDate 2019-01-01
publisher Copernicus Publications
record_format Article
series Journal of Sensors and Sensor Systems
spelling doaj.art-e16b5aa32c7d4b24b4c55e27d9bf55be2022-12-22T02:51:33ZengCopernicus PublicationsJournal of Sensors and Sensor Systems2194-87712194-878X2019-01-018374810.5194/jsss-8-37-2019Phase optimization of thermally actuated piezoresistive resonant MEMS cantilever sensorsA. Setiono0A. Setiono1A. Setiono2M. Fahrbach3M. Fahrbach4J. Xu5J. Xu6M. Bertke7M. Bertke8W. O. Nyang'au9W. O. Nyang'au10W. O. Nyang'au11G. Hamdana12G. Hamdana13H. S. Wasisto14H. S. Wasisto15E. Peiner16E. Peiner17Institute of Semiconductor Technology (IHT), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, GermanyLaboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, Langer Kamp 6a, 38106 Braunschweig, GermanyResearch Centre for Physics, Indonesia Institute of Sciences (LIPI), Kawasan Puspiptek Serpong, 15314 Tangerang Selatan, IndonesiaInstitute of Semiconductor Technology (IHT), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, GermanyLaboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, Langer Kamp 6a, 38106 Braunschweig, GermanyInstitute of Semiconductor Technology (IHT), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, GermanyLaboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, Langer Kamp 6a, 38106 Braunschweig, GermanyInstitute of Semiconductor Technology (IHT), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, GermanyLaboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, Langer Kamp 6a, 38106 Braunschweig, GermanyInstitute of Semiconductor Technology (IHT), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, GermanyLaboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, Langer Kamp 6a, 38106 Braunschweig, GermanyDepartment of Metrology, Kenya Bureau of Standards (KEBS), Popo Rd, 00200 Nairobi, KenyaInstitute of Semiconductor Technology (IHT), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, GermanyLaboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, Langer Kamp 6a, 38106 Braunschweig, GermanyInstitute of Semiconductor Technology (IHT), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, GermanyLaboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, Langer Kamp 6a, 38106 Braunschweig, GermanyInstitute of Semiconductor Technology (IHT), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, GermanyLaboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, Langer Kamp 6a, 38106 Braunschweig, Germany<p>The asymmetric resonance response in thermally actuated piezoresistive cantilever sensors causes a need for optimization, taking parasitic actuation–sensing effects into account. In this work, two compensation methods based on Wheatstone bridge (WB) input voltage (<i>V</i><sub>WB_in</sub>) adjustment and reference circuit involvement were developed and investigated to diminish those unwanted coupling influences. In the first approach, <i>V</i><sub>WB_in</sub> was increased, resulting in a higher current flowing through the WB piezoresistors as well as a temperature gradient reduction between the thermal actuator (heating resistor: HR) and the WB, which can consequently minimize the parasitic coupling. Nevertheless, increasing <i>V</i><sub>WB_in</sub> (e.g., from 1 to 3.3&thinsp;V) may also yield an unwanted increase in power consumption by more than 10 times. Therefore, a second compensation method was considered: i.e., a reference electronic circuit is integrated with the cantilever sensor. Here, an electronic reference circuit was developed, which mimics the frequency behavior of the parasitic coupling. By subtracting the output of this circuit from the output of the cantilever, the resonance response can thus be improved. Both simulated and measured data show optimized amplitude and phase characteristics around resonant frequencies of 190.17 and 202.32&thinsp;kHz, respectively. With this phase optimization in place, a phase-locked-loop (PLL) based system can be used to track the resonant frequency in real time, even under changing conditions of temperature (<i>T</i>) and relative humidity (RH), respectively. Finally, it is expected to enhance the sensitivity of such piezoresistive electro-thermal cantilever sensors under loading with any target analytes (e.g., particulate matter, gas, and humidity).</p>https://www.j-sens-sens-syst.net/8/37/2019/jsss-8-37-2019.pdf
spellingShingle A. Setiono
A. Setiono
A. Setiono
M. Fahrbach
M. Fahrbach
J. Xu
J. Xu
M. Bertke
M. Bertke
W. O. Nyang'au
W. O. Nyang'au
W. O. Nyang'au
G. Hamdana
G. Hamdana
H. S. Wasisto
H. S. Wasisto
E. Peiner
E. Peiner
Phase optimization of thermally actuated piezoresistive resonant MEMS cantilever sensors
Journal of Sensors and Sensor Systems
title Phase optimization of thermally actuated piezoresistive resonant MEMS cantilever sensors
title_full Phase optimization of thermally actuated piezoresistive resonant MEMS cantilever sensors
title_fullStr Phase optimization of thermally actuated piezoresistive resonant MEMS cantilever sensors
title_full_unstemmed Phase optimization of thermally actuated piezoresistive resonant MEMS cantilever sensors
title_short Phase optimization of thermally actuated piezoresistive resonant MEMS cantilever sensors
title_sort phase optimization of thermally actuated piezoresistive resonant mems cantilever sensors
url https://www.j-sens-sens-syst.net/8/37/2019/jsss-8-37-2019.pdf
work_keys_str_mv AT asetiono phaseoptimizationofthermallyactuatedpiezoresistiveresonantmemscantileversensors
AT asetiono phaseoptimizationofthermallyactuatedpiezoresistiveresonantmemscantileversensors
AT asetiono phaseoptimizationofthermallyactuatedpiezoresistiveresonantmemscantileversensors
AT mfahrbach phaseoptimizationofthermallyactuatedpiezoresistiveresonantmemscantileversensors
AT mfahrbach phaseoptimizationofthermallyactuatedpiezoresistiveresonantmemscantileversensors
AT jxu phaseoptimizationofthermallyactuatedpiezoresistiveresonantmemscantileversensors
AT jxu phaseoptimizationofthermallyactuatedpiezoresistiveresonantmemscantileversensors
AT mbertke phaseoptimizationofthermallyactuatedpiezoresistiveresonantmemscantileversensors
AT mbertke phaseoptimizationofthermallyactuatedpiezoresistiveresonantmemscantileversensors
AT wonyangau phaseoptimizationofthermallyactuatedpiezoresistiveresonantmemscantileversensors
AT wonyangau phaseoptimizationofthermallyactuatedpiezoresistiveresonantmemscantileversensors
AT wonyangau phaseoptimizationofthermallyactuatedpiezoresistiveresonantmemscantileversensors
AT ghamdana phaseoptimizationofthermallyactuatedpiezoresistiveresonantmemscantileversensors
AT ghamdana phaseoptimizationofthermallyactuatedpiezoresistiveresonantmemscantileversensors
AT hswasisto phaseoptimizationofthermallyactuatedpiezoresistiveresonantmemscantileversensors
AT hswasisto phaseoptimizationofthermallyactuatedpiezoresistiveresonantmemscantileversensors
AT epeiner phaseoptimizationofthermallyactuatedpiezoresistiveresonantmemscantileversensors
AT epeiner phaseoptimizationofthermallyactuatedpiezoresistiveresonantmemscantileversensors