AAQAL: A Machine Learning-Based Tool for Performance Optimization of Parallel SPMV Computations Using Block CSR
The sparse matrix–vector product (SpMV), considered one of the seven dwarfs (numerical methods of significance), is essential in high-performance real-world scientific and analytical applications requiring solution of large sparse linear equation systems, where SpMV is a key computing operation. As...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-07-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/12/14/7073 |