Quantitation of the A<sub>2A</sub> Adenosine Receptor Density in the Striatum of Mice and Pigs with [<sup>18</sup>F]FLUDA by Positron Emission Tomography

The cerebral expression of the A<sub>2A</sub> adenosine receptor (A<sub>2A</sub>AR) is altered in neurodegenerative diseases such as Parkinson’s (PD) and Huntington’s (HD) diseases, making these receptors an attractive diagnostic and therapeutic target. We aimed to further in...

Full description

Bibliographic Details
Main Authors: Daniel Gündel, Magali Toussaint, Thu Hang Lai, Winnie Deuther-Conrad, Paul Cumming, Susann Schröder, Rodrigo Teodoro, Rareş-Petru Moldovan, Francisco Pan-Montojo, Bernhard Sattler, Klaus Kopka, Osama Sabri, Peter Brust
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Pharmaceuticals
Subjects:
Online Access:https://www.mdpi.com/1424-8247/15/5/516
_version_ 1797496973190758400
author Daniel Gündel
Magali Toussaint
Thu Hang Lai
Winnie Deuther-Conrad
Paul Cumming
Susann Schröder
Rodrigo Teodoro
Rareş-Petru Moldovan
Francisco Pan-Montojo
Bernhard Sattler
Klaus Kopka
Osama Sabri
Peter Brust
author_facet Daniel Gündel
Magali Toussaint
Thu Hang Lai
Winnie Deuther-Conrad
Paul Cumming
Susann Schröder
Rodrigo Teodoro
Rareş-Petru Moldovan
Francisco Pan-Montojo
Bernhard Sattler
Klaus Kopka
Osama Sabri
Peter Brust
author_sort Daniel Gündel
collection DOAJ
description The cerebral expression of the A<sub>2A</sub> adenosine receptor (A<sub>2A</sub>AR) is altered in neurodegenerative diseases such as Parkinson’s (PD) and Huntington’s (HD) diseases, making these receptors an attractive diagnostic and therapeutic target. We aimed to further investigate the pharmacokinetic properties in the brain of our recently developed A<sub>2A</sub>AR–specific antagonist radiotracer [<sup>18</sup>F]FLUDA. For this purpose, we retrospectively analysed dynamic PET studies of healthy mice and rotenone–treated mice, and conducted dynamic PET studies with healthy pigs. We performed analysis of mouse brain time–activity curves to calculate the mean residence time (MRT) by non–compartmental analysis, and the binding potential (<i>BP</i><sub>ND</sub>) of [<sup>18</sup>F]FLUDA using the simplified reference tissue model (SRTM). For the pig studies, we performed a Logan graphical analysis to calculate the radiotracer distribution volume (<i>V</i><sub>T</sub>) at baseline and under blocking conditions with tozadenant. The MRT of [<sup>18</sup>F]FLUDA in the striatum of mice was decreased by 30% after treatment with the A<sub>2A</sub>AR antagonist istradefylline. Mouse results showed the highest <i>BP<sub>ND</sub></i> (3.9 to 5.9) in the striatum. SRTM analysis showed a 20% lower A<sub>2A</sub>AR availability in the rotenone–treated mice compared to the control–aged group. Tozadenant treatment significantly decreased the <i>V</i><sub>T</sub> (14.6 vs. 8.5 mL · g<sup>−1</sup>) and <i>BP</i><sub>ND</sub> values (1.3 vs. 0.3) in pig striatum. This study confirms the target specificity and a high <i>BP</i><sub>ND</sub> of [<sup>18</sup>F]FLUDA in the striatum. We conclude that [<sup>18</sup>F]FLUDA is a suitable tool for the non–invasive quantitation of altered A<sub>2A</sub>AR expression in neurodegenerative diseases such as PD and HD, by PET.
first_indexed 2024-03-10T03:10:56Z
format Article
id doaj.art-e2058fe7ee934c008d6cd4ac33ced1b4
institution Directory Open Access Journal
issn 1424-8247
language English
last_indexed 2024-03-10T03:10:56Z
publishDate 2022-04-01
publisher MDPI AG
record_format Article
series Pharmaceuticals
spelling doaj.art-e2058fe7ee934c008d6cd4ac33ced1b42023-11-23T12:33:47ZengMDPI AGPharmaceuticals1424-82472022-04-0115551610.3390/ph15050516Quantitation of the A<sub>2A</sub> Adenosine Receptor Density in the Striatum of Mice and Pigs with [<sup>18</sup>F]FLUDA by Positron Emission TomographyDaniel Gündel0Magali Toussaint1Thu Hang Lai2Winnie Deuther-Conrad3Paul Cumming4Susann Schröder5Rodrigo Teodoro6Rareş-Petru Moldovan7Francisco Pan-Montojo8Bernhard Sattler9Klaus Kopka10Osama Sabri11Peter Brust12Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, GermanyDepartment of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, GermanyDepartment of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, GermanyDepartment of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, GermanyDepartment of Nuclear Medicine, Bern University Hospital, 3010 Bern, SwitzerlandDepartment of Research and Development, ROTOP Pharmaka Ltd., 01328 Dresden, GermanyDepartment of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, GermanyDepartment of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, GermanyDepartment of Psychiatry, University Hospital Munich, Ludwig–Maximilians–Universität (LMU) Munich, 80336 Munich, GermanyDepartment for Nuclear Medicine, University Hospital Leipzig, 04103 Leipzig, GermanyDepartment of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, GermanyDepartment for Nuclear Medicine, University Hospital Leipzig, 04103 Leipzig, GermanyDepartment of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, GermanyThe cerebral expression of the A<sub>2A</sub> adenosine receptor (A<sub>2A</sub>AR) is altered in neurodegenerative diseases such as Parkinson’s (PD) and Huntington’s (HD) diseases, making these receptors an attractive diagnostic and therapeutic target. We aimed to further investigate the pharmacokinetic properties in the brain of our recently developed A<sub>2A</sub>AR–specific antagonist radiotracer [<sup>18</sup>F]FLUDA. For this purpose, we retrospectively analysed dynamic PET studies of healthy mice and rotenone–treated mice, and conducted dynamic PET studies with healthy pigs. We performed analysis of mouse brain time–activity curves to calculate the mean residence time (MRT) by non–compartmental analysis, and the binding potential (<i>BP</i><sub>ND</sub>) of [<sup>18</sup>F]FLUDA using the simplified reference tissue model (SRTM). For the pig studies, we performed a Logan graphical analysis to calculate the radiotracer distribution volume (<i>V</i><sub>T</sub>) at baseline and under blocking conditions with tozadenant. The MRT of [<sup>18</sup>F]FLUDA in the striatum of mice was decreased by 30% after treatment with the A<sub>2A</sub>AR antagonist istradefylline. Mouse results showed the highest <i>BP<sub>ND</sub></i> (3.9 to 5.9) in the striatum. SRTM analysis showed a 20% lower A<sub>2A</sub>AR availability in the rotenone–treated mice compared to the control–aged group. Tozadenant treatment significantly decreased the <i>V</i><sub>T</sub> (14.6 vs. 8.5 mL · g<sup>−1</sup>) and <i>BP</i><sub>ND</sub> values (1.3 vs. 0.3) in pig striatum. This study confirms the target specificity and a high <i>BP</i><sub>ND</sub> of [<sup>18</sup>F]FLUDA in the striatum. We conclude that [<sup>18</sup>F]FLUDA is a suitable tool for the non–invasive quantitation of altered A<sub>2A</sub>AR expression in neurodegenerative diseases such as PD and HD, by PET.https://www.mdpi.com/1424-8247/15/5/5167–(3–(4–(2–[<sup>18</sup>F]fluoroethoxy–1,1,2,2–d4)phenyl)propyl)–2–(furan–2–yl)–7H–pyrazolo[4,3–e][1,2,4]triazolo–[1,5–c]pyrimidin–5–amine ([<sup>18</sup>F]FLUDA)A<sub>2A</sub> adenosine receptor (A<sub>2A</sub>AR)Parkinson’s disease (PD)Huntington’s disease (HD)kinetic analysispreclinical positron emission tomography (PET)
spellingShingle Daniel Gündel
Magali Toussaint
Thu Hang Lai
Winnie Deuther-Conrad
Paul Cumming
Susann Schröder
Rodrigo Teodoro
Rareş-Petru Moldovan
Francisco Pan-Montojo
Bernhard Sattler
Klaus Kopka
Osama Sabri
Peter Brust
Quantitation of the A<sub>2A</sub> Adenosine Receptor Density in the Striatum of Mice and Pigs with [<sup>18</sup>F]FLUDA by Positron Emission Tomography
Pharmaceuticals
7–(3–(4–(2–[<sup>18</sup>F]fluoroethoxy–1,1,2,2–d4)phenyl)propyl)–2–(furan–2–yl)–7H–pyrazolo[4,3–e][1,2,4]triazolo–[1,5–c]pyrimidin–5–amine ([<sup>18</sup>F]FLUDA)
A<sub>2A</sub> adenosine receptor (A<sub>2A</sub>AR)
Parkinson’s disease (PD)
Huntington’s disease (HD)
kinetic analysis
preclinical positron emission tomography (PET)
title Quantitation of the A<sub>2A</sub> Adenosine Receptor Density in the Striatum of Mice and Pigs with [<sup>18</sup>F]FLUDA by Positron Emission Tomography
title_full Quantitation of the A<sub>2A</sub> Adenosine Receptor Density in the Striatum of Mice and Pigs with [<sup>18</sup>F]FLUDA by Positron Emission Tomography
title_fullStr Quantitation of the A<sub>2A</sub> Adenosine Receptor Density in the Striatum of Mice and Pigs with [<sup>18</sup>F]FLUDA by Positron Emission Tomography
title_full_unstemmed Quantitation of the A<sub>2A</sub> Adenosine Receptor Density in the Striatum of Mice and Pigs with [<sup>18</sup>F]FLUDA by Positron Emission Tomography
title_short Quantitation of the A<sub>2A</sub> Adenosine Receptor Density in the Striatum of Mice and Pigs with [<sup>18</sup>F]FLUDA by Positron Emission Tomography
title_sort quantitation of the a sub 2a sub adenosine receptor density in the striatum of mice and pigs with sup 18 sup f fluda by positron emission tomography
topic 7–(3–(4–(2–[<sup>18</sup>F]fluoroethoxy–1,1,2,2–d4)phenyl)propyl)–2–(furan–2–yl)–7H–pyrazolo[4,3–e][1,2,4]triazolo–[1,5–c]pyrimidin–5–amine ([<sup>18</sup>F]FLUDA)
A<sub>2A</sub> adenosine receptor (A<sub>2A</sub>AR)
Parkinson’s disease (PD)
Huntington’s disease (HD)
kinetic analysis
preclinical positron emission tomography (PET)
url https://www.mdpi.com/1424-8247/15/5/516
work_keys_str_mv AT danielgundel quantitationoftheasub2asubadenosinereceptordensityinthestriatumofmiceandpigswithsup18supffludabypositronemissiontomography
AT magalitoussaint quantitationoftheasub2asubadenosinereceptordensityinthestriatumofmiceandpigswithsup18supffludabypositronemissiontomography
AT thuhanglai quantitationoftheasub2asubadenosinereceptordensityinthestriatumofmiceandpigswithsup18supffludabypositronemissiontomography
AT winniedeutherconrad quantitationoftheasub2asubadenosinereceptordensityinthestriatumofmiceandpigswithsup18supffludabypositronemissiontomography
AT paulcumming quantitationoftheasub2asubadenosinereceptordensityinthestriatumofmiceandpigswithsup18supffludabypositronemissiontomography
AT susannschroder quantitationoftheasub2asubadenosinereceptordensityinthestriatumofmiceandpigswithsup18supffludabypositronemissiontomography
AT rodrigoteodoro quantitationoftheasub2asubadenosinereceptordensityinthestriatumofmiceandpigswithsup18supffludabypositronemissiontomography
AT rarespetrumoldovan quantitationoftheasub2asubadenosinereceptordensityinthestriatumofmiceandpigswithsup18supffludabypositronemissiontomography
AT franciscopanmontojo quantitationoftheasub2asubadenosinereceptordensityinthestriatumofmiceandpigswithsup18supffludabypositronemissiontomography
AT bernhardsattler quantitationoftheasub2asubadenosinereceptordensityinthestriatumofmiceandpigswithsup18supffludabypositronemissiontomography
AT klauskopka quantitationoftheasub2asubadenosinereceptordensityinthestriatumofmiceandpigswithsup18supffludabypositronemissiontomography
AT osamasabri quantitationoftheasub2asubadenosinereceptordensityinthestriatumofmiceandpigswithsup18supffludabypositronemissiontomography
AT peterbrust quantitationoftheasub2asubadenosinereceptordensityinthestriatumofmiceandpigswithsup18supffludabypositronemissiontomography