Existence and Uniqueness Results of Coupled Fractional-Order Differential Systems Involving Riemann–Liouville Derivative in the Space <inline-formula><math display="inline"><semantics><mrow><msubsup><mi>W</mi><mrow><msup><mi>a</mi><mo>+</mo></msup></mrow><mrow><msub><mi>γ</mi><mn>1</mn></msub><mo>,</mo><mn>1</mn></mrow></msubsup><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow><mo>×</mo><msubsup><mi>W</mi><mrow><msup><mi>a</mi><mo>+</mo></msup></mrow><mrow><msub><mi>γ</mi><mn>2</mn></msub><mo>,</mo><mn>1</mn></mrow></msubsup><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> with Perov’s Fixed Point Theorem

This paper is devoted to studying the existence and uniqueness of a system of coupled fractional differential equations involving a Riemann–Liouville derivative in the Cartesian product of fractional Sobolev spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" d...

Full description

Bibliographic Details
Main Authors: Noura Laksaci, Ahmed Boudaoui, Kamaleldin Abodayeh, Wasfi Shatanawi, Taqi A. M. Shatnawi
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/5/4/217