Evolutionary Learning of Interpretable Decision Trees
In the last decade, reinforcement learning (RL) has been used to solve several tasks with human-level performance. However, there is a growing demand for interpretable RL, i.e., there is the need to understand how a RL agent works and the rationale of its decisions. Not only do we need interpretabil...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2023-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10015004/ |