Unsupervised Change Detection Using Multiscale and Multiresolution Gaussian-Mixture-Model Guided by Saliency Enhancement
Popular unsupervised change detection algorithms suffer from two problems: first, the difference image generated by bitemporal images usually includes a large number of falsely changed regions due to noise corruption and illumination change; second, fuzzy clustering algorithms are sensitive to noise...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2021-01-01
|
Series: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9305230/ |