Exploring Evaluation Methods for Interpretable Machine Learning: A Survey
In recent times, the progress of machine learning has facilitated the development of decision support systems that exhibit predictive accuracy, surpassing human capabilities in certain scenarios. However, this improvement has come at the cost of increased model complexity, rendering them black-box m...
Үндсэн зохиолчид: | Nourah Alangari, Mohamed El Bachir Menai, Hassan Mathkour, Ibrahim Almosallam |
---|---|
Формат: | Өгүүллэг |
Хэл сонгох: | English |
Хэвлэсэн: |
MDPI AG
2023-08-01
|
Цуврал: | Information |
Нөхцлүүд: | |
Онлайн хандалт: | https://www.mdpi.com/2078-2489/14/8/469 |
Ижил төстэй зүйлс
-
Intrinsically Interpretable Gaussian Mixture Model
-н: Nourah Alangari, зэрэг
Хэвлэсэн: (2023-03-01) -
Making Sense of Machine Learning: A Review of Interpretation Techniques and Their Applications
-н: Ainura Tursunalieva, зэрэг
Хэвлэсэн: (2024-01-01) -
Opening the Black-Box: Extracting Medical Reasoning from Machine Learning Predictions
-н: Marius FERSIGAN, зэрэг
Хэвлэсэн: (2021-09-01) -
Effects of Class Imbalance Countermeasures on Interpretability
-н: David Cemernek, зэрэг
Хэвлэсэн: (2024-01-01) -
Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey
-н: Vanessa Buhrmester, зэрэг
Хэвлэсэн: (2021-12-01)