Segmentation of MR images for brain tumor detection using autoencoder neural network
Abstract Medical images often require segmenting into different regions in the first analysis stage. Relevant features are selected to differentiate various regions from each other, and the images are segmented into meaningful (anatomically significant) regions based on these features. The purpose o...
Hlavní autoři: | Farnaz Hoseini, Shohreh Shamlou, Milad Ahmadi-Gharehtoragh |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
Springer
2024-10-01
|
Edice: | Discover Artificial Intelligence |
Témata: | |
On-line přístup: | https://doi.org/10.1007/s44163-024-00180-x |
Podobné jednotky
-
FIESTA: Autoencoders for accurate fiber segmentation in tractography
Autor: Félix Dumais, a další
Vydáno: (2023-10-01) -
ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data
Autor: Fahad Almuqhim, a další
Vydáno: (2021-04-01) -
A Novel Generative Adversarial Network-Based Approach for Automated Brain Tumour Segmentation
Autor: Roohi Sille, a další
Vydáno: (2023-01-01) -
Super-resolution reconstruction of brain magnetic resonance images via lightweight autoencoder
Autor: J. Andrew, a další
Vydáno: (2021-01-01) -
Deep Learning for Skeleton-Based Human Activity Segmentation: An Autoencoder Approach
Autor: Md Amran Hossen, a další
Vydáno: (2024-06-01)