Segmentation of MR images for brain tumor detection using autoencoder neural network
Abstract Medical images often require segmenting into different regions in the first analysis stage. Relevant features are selected to differentiate various regions from each other, and the images are segmented into meaningful (anatomically significant) regions based on these features. The purpose o...
Κύριοι συγγραφείς: | Farnaz Hoseini, Shohreh Shamlou, Milad Ahmadi-Gharehtoragh |
---|---|
Μορφή: | Άρθρο |
Γλώσσα: | English |
Έκδοση: |
Springer
2024-10-01
|
Σειρά: | Discover Artificial Intelligence |
Θέματα: | |
Διαθέσιμο Online: | https://doi.org/10.1007/s44163-024-00180-x |
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
FIESTA: Autoencoders for accurate fiber segmentation in tractography
ανά: Félix Dumais, κ.ά.
Έκδοση: (2023-10-01) -
ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data
ανά: Fahad Almuqhim, κ.ά.
Έκδοση: (2021-04-01) -
A Novel Generative Adversarial Network-Based Approach for Automated Brain Tumour Segmentation
ανά: Roohi Sille, κ.ά.
Έκδοση: (2023-01-01) -
Super-resolution reconstruction of brain magnetic resonance images via lightweight autoencoder
ανά: J. Andrew, κ.ά.
Έκδοση: (2021-01-01) -
Invertible Autoencoder for Domain Adaptation
ανά: Yunfei Teng, κ.ά.
Έκδοση: (2019-03-01)