Segmentation of MR images for brain tumor detection using autoencoder neural network
Abstract Medical images often require segmenting into different regions in the first analysis stage. Relevant features are selected to differentiate various regions from each other, and the images are segmented into meaningful (anatomically significant) regions based on these features. The purpose o...
Үндсэн зохиолчид: | Farnaz Hoseini, Shohreh Shamlou, Milad Ahmadi-Gharehtoragh |
---|---|
Формат: | Өгүүллэг |
Хэл сонгох: | English |
Хэвлэсэн: |
Springer
2024-10-01
|
Цуврал: | Discover Artificial Intelligence |
Нөхцлүүд: | |
Онлайн хандалт: | https://doi.org/10.1007/s44163-024-00180-x |
Ижил төстэй зүйлс
-
FIESTA: Autoencoders for accurate fiber segmentation in tractography
-н: Félix Dumais, зэрэг
Хэвлэсэн: (2023-10-01) -
ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data
-н: Fahad Almuqhim, зэрэг
Хэвлэсэн: (2021-04-01) -
A Novel Generative Adversarial Network-Based Approach for Automated Brain Tumour Segmentation
-н: Roohi Sille, зэрэг
Хэвлэсэн: (2023-01-01) -
Super-resolution reconstruction of brain magnetic resonance images via lightweight autoencoder
-н: J. Andrew, зэрэг
Хэвлэсэн: (2021-01-01) -
Deep Learning for Skeleton-Based Human Activity Segmentation: An Autoencoder Approach
-н: Md Amran Hossen, зэрэг
Хэвлэсэн: (2024-06-01)