Segmentation of MR images for brain tumor detection using autoencoder neural network
Abstract Medical images often require segmenting into different regions in the first analysis stage. Relevant features are selected to differentiate various regions from each other, and the images are segmented into meaningful (anatomically significant) regions based on these features. The purpose o...
Những tác giả chính: | Farnaz Hoseini, Shohreh Shamlou, Milad Ahmadi-Gharehtoragh |
---|---|
Định dạng: | Bài viết |
Ngôn ngữ: | English |
Được phát hành: |
Springer
2024-10-01
|
Loạt: | Discover Artificial Intelligence |
Những chủ đề: | |
Truy cập trực tuyến: | https://doi.org/10.1007/s44163-024-00180-x |
Những quyển sách tương tự
-
FIESTA: Autoencoders for accurate fiber segmentation in tractography
Bằng: Félix Dumais, et al.
Được phát hành: (2023-10-01) -
ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data
Bằng: Fahad Almuqhim, et al.
Được phát hành: (2021-04-01) -
A Novel Generative Adversarial Network-Based Approach for Automated Brain Tumour Segmentation
Bằng: Roohi Sille, et al.
Được phát hành: (2023-01-01) -
Super-resolution reconstruction of brain magnetic resonance images via lightweight autoencoder
Bằng: J. Andrew, et al.
Được phát hành: (2021-01-01) -
Invertible Autoencoder for Domain Adaptation
Bằng: Yunfei Teng, et al.
Được phát hành: (2019-03-01)