Learning recurrent dynamics in spiking networks
Spiking activity of neurons engaged in learning and performing a task show complex spatiotemporal dynamics. While the output of recurrent network models can learn to perform various tasks, the possible range of recurrent dynamics that emerge after learning remains unknown. Here we show that modifyin...
Κύριοι συγγραφείς: | Christopher M Kim, Carson C Chow |
---|---|
Μορφή: | Άρθρο |
Γλώσσα: | English |
Έκδοση: |
eLife Sciences Publications Ltd
2018-09-01
|
Σειρά: | eLife |
Θέματα: | |
Διαθέσιμο Online: | https://elifesciences.org/articles/37124 |
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
A Non-spiking Neuron Model With Dynamic Leak to Avoid Instability in Recurrent Networks
ανά: Udaya B. Rongala, κ.ά.
Έκδοση: (2021-05-01) -
Temporal Spiking Recurrent Neural Network for Action Recognition
ανά: Wei Wang, κ.ά.
Έκδοση: (2019-01-01) -
Modified Elman Spike Neural Network for Identification and Control of Dynamic System
ανά: Nadia Adnan Shiltagh Al-Jamali, κ.ά.
Έκδοση: (2020-01-01) -
Identifying steady state in the network dynamics of spiking neural networks
ανά: Vivek Kurien George, κ.ά.
Έκδοση: (2023-03-01) -
Volatile Memory Motifs: Minimal Spiking Neural Networks
ανά: Fabio Schittler Neves, κ.ά.
Έκδοση: (2023-01-01)