Learning recurrent dynamics in spiking networks
Spiking activity of neurons engaged in learning and performing a task show complex spatiotemporal dynamics. While the output of recurrent network models can learn to perform various tasks, the possible range of recurrent dynamics that emerge after learning remains unknown. Here we show that modifyin...
Main Authors: | Christopher M Kim, Carson C Chow |
---|---|
פורמט: | Article |
שפה: | English |
יצא לאור: |
eLife Sciences Publications Ltd
2018-09-01
|
סדרה: | eLife |
נושאים: | |
גישה מקוונת: | https://elifesciences.org/articles/37124 |
פריטים דומים
-
A Non-spiking Neuron Model With Dynamic Leak to Avoid Instability in Recurrent Networks
מאת: Udaya B. Rongala, et al.
יצא לאור: (2021-05-01) -
Temporal Spiking Recurrent Neural Network for Action Recognition
מאת: Wei Wang, et al.
יצא לאור: (2019-01-01) -
Modified Elman Spike Neural Network for Identification and Control of Dynamic System
מאת: Nadia Adnan Shiltagh Al-Jamali, et al.
יצא לאור: (2020-01-01) -
Identifying steady state in the network dynamics of spiking neural networks
מאת: Vivek Kurien George, et al.
יצא לאור: (2023-03-01) -
Volatile Memory Motifs: Minimal Spiking Neural Networks
מאת: Fabio Schittler Neves, et al.
יצא לאור: (2023-01-01)