Learning recurrent dynamics in spiking networks
Spiking activity of neurons engaged in learning and performing a task show complex spatiotemporal dynamics. While the output of recurrent network models can learn to perform various tasks, the possible range of recurrent dynamics that emerge after learning remains unknown. Here we show that modifyin...
Asıl Yazarlar: | Christopher M Kim, Carson C Chow |
---|---|
Materyal Türü: | Makale |
Dil: | English |
Baskı/Yayın Bilgisi: |
eLife Sciences Publications Ltd
2018-09-01
|
Seri Bilgileri: | eLife |
Konular: | |
Online Erişim: | https://elifesciences.org/articles/37124 |
Benzer Materyaller
-
A Non-spiking Neuron Model With Dynamic Leak to Avoid Instability in Recurrent Networks
Yazar:: Udaya B. Rongala, ve diğerleri
Baskı/Yayın Bilgisi: (2021-05-01) -
Temporal Spiking Recurrent Neural Network for Action Recognition
Yazar:: Wei Wang, ve diğerleri
Baskı/Yayın Bilgisi: (2019-01-01) -
Modified Elman Spike Neural Network for Identification and Control of Dynamic System
Yazar:: Nadia Adnan Shiltagh Al-Jamali, ve diğerleri
Baskı/Yayın Bilgisi: (2020-01-01) -
Identifying steady state in the network dynamics of spiking neural networks
Yazar:: Vivek Kurien George, ve diğerleri
Baskı/Yayın Bilgisi: (2023-03-01) -
Volatile Memory Motifs: Minimal Spiking Neural Networks
Yazar:: Fabio Schittler Neves, ve diğerleri
Baskı/Yayın Bilgisi: (2023-01-01)