Multiple Adverse Weather Removal Using Masked-Based Pre-Training and Dual-Pooling Adaptive Convolution
Removing artifacts caused by multiple adverse weather, including rain, fog, and snow, is crucial for image processing in outdoor environments. Conventional high-performing methods face challenges, such as requiring pre-specification of weather types and slow processing times. In this study, we propo...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2024-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10506517/ |