Surface Passivation by Quantum Exclusion: On the Quantum Efficiency and Stability of Delta-Doped CCDs and CMOS Image Sensors in Space

Radiation-induced damage and instabilities in back-illuminated silicon detectors have proved to be challenging in multiple NASA and commercial applications. In this paper, we develop a model of detector quantum efficiency (QE) as a function of Si–SiO<sub>2</sub> interface and oxide trap...

Full description

Bibliographic Details
Main Authors: Michael E. Hoenk, April D. Jewell, Gillian Kyne, John Hennessy, Todd Jones, Charles Shapiro, Nathan Bush, Shouleh Nikzad, David Morris, Katherine Lawrie, Jesper Skottfelt
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/23/24/9857
_version_ 1797379389665574912
author Michael E. Hoenk
April D. Jewell
Gillian Kyne
John Hennessy
Todd Jones
Charles Shapiro
Nathan Bush
Shouleh Nikzad
David Morris
Katherine Lawrie
Jesper Skottfelt
author_facet Michael E. Hoenk
April D. Jewell
Gillian Kyne
John Hennessy
Todd Jones
Charles Shapiro
Nathan Bush
Shouleh Nikzad
David Morris
Katherine Lawrie
Jesper Skottfelt
author_sort Michael E. Hoenk
collection DOAJ
description Radiation-induced damage and instabilities in back-illuminated silicon detectors have proved to be challenging in multiple NASA and commercial applications. In this paper, we develop a model of detector quantum efficiency (QE) as a function of Si–SiO<sub>2</sub> interface and oxide trap densities to analyze the performance of silicon detectors and explore the requirements for stable, radiation-hardened surface passivation. By analyzing QE data acquired before, during, and after, exposure to damaging UV radiation, we explore the physical and chemical mechanisms underlying UV-induced surface damage, variable surface charge, QE, and stability in ion-implanted and delta-doped detectors. Delta-doped CCD and CMOS image sensors are shown to be uniquely hardened against surface damage caused by ionizing radiation, enabling the stability and photometric accuracy required by NASA for exoplanet science and time domain astronomy.
first_indexed 2024-03-08T20:22:31Z
format Article
id doaj.art-e3d54c54ebac4d1fa97b8414b874f33f
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-08T20:22:31Z
publishDate 2023-12-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-e3d54c54ebac4d1fa97b8414b874f33f2023-12-22T14:41:11ZengMDPI AGSensors1424-82202023-12-012324985710.3390/s23249857Surface Passivation by Quantum Exclusion: On the Quantum Efficiency and Stability of Delta-Doped CCDs and CMOS Image Sensors in SpaceMichael E. Hoenk0April D. Jewell1Gillian Kyne2John Hennessy3Todd Jones4Charles Shapiro5Nathan Bush6Shouleh Nikzad7David Morris8Katherine Lawrie9Jesper Skottfelt10Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USATeledyne e2v, Chelmsford CM1 2QU, UKTeledyne e2v, Chelmsford CM1 2QU, UKCentre for Electronic Imaging, School of Physical Sciences, The Open University, Milton Keynes MK7 6AA, UKRadiation-induced damage and instabilities in back-illuminated silicon detectors have proved to be challenging in multiple NASA and commercial applications. In this paper, we develop a model of detector quantum efficiency (QE) as a function of Si–SiO<sub>2</sub> interface and oxide trap densities to analyze the performance of silicon detectors and explore the requirements for stable, radiation-hardened surface passivation. By analyzing QE data acquired before, during, and after, exposure to damaging UV radiation, we explore the physical and chemical mechanisms underlying UV-induced surface damage, variable surface charge, QE, and stability in ion-implanted and delta-doped detectors. Delta-doped CCD and CMOS image sensors are shown to be uniquely hardened against surface damage caused by ionizing radiation, enabling the stability and photometric accuracy required by NASA for exoplanet science and time domain astronomy.https://www.mdpi.com/1424-8220/23/24/9857CMOS image sensorsdelta-doped CCDradiation damagestabilityimage sensordelta-doped silicon
spellingShingle Michael E. Hoenk
April D. Jewell
Gillian Kyne
John Hennessy
Todd Jones
Charles Shapiro
Nathan Bush
Shouleh Nikzad
David Morris
Katherine Lawrie
Jesper Skottfelt
Surface Passivation by Quantum Exclusion: On the Quantum Efficiency and Stability of Delta-Doped CCDs and CMOS Image Sensors in Space
Sensors
CMOS image sensors
delta-doped CCD
radiation damage
stability
image sensor
delta-doped silicon
title Surface Passivation by Quantum Exclusion: On the Quantum Efficiency and Stability of Delta-Doped CCDs and CMOS Image Sensors in Space
title_full Surface Passivation by Quantum Exclusion: On the Quantum Efficiency and Stability of Delta-Doped CCDs and CMOS Image Sensors in Space
title_fullStr Surface Passivation by Quantum Exclusion: On the Quantum Efficiency and Stability of Delta-Doped CCDs and CMOS Image Sensors in Space
title_full_unstemmed Surface Passivation by Quantum Exclusion: On the Quantum Efficiency and Stability of Delta-Doped CCDs and CMOS Image Sensors in Space
title_short Surface Passivation by Quantum Exclusion: On the Quantum Efficiency and Stability of Delta-Doped CCDs and CMOS Image Sensors in Space
title_sort surface passivation by quantum exclusion on the quantum efficiency and stability of delta doped ccds and cmos image sensors in space
topic CMOS image sensors
delta-doped CCD
radiation damage
stability
image sensor
delta-doped silicon
url https://www.mdpi.com/1424-8220/23/24/9857
work_keys_str_mv AT michaelehoenk surfacepassivationbyquantumexclusiononthequantumefficiencyandstabilityofdeltadopedccdsandcmosimagesensorsinspace
AT aprildjewell surfacepassivationbyquantumexclusiononthequantumefficiencyandstabilityofdeltadopedccdsandcmosimagesensorsinspace
AT gilliankyne surfacepassivationbyquantumexclusiononthequantumefficiencyandstabilityofdeltadopedccdsandcmosimagesensorsinspace
AT johnhennessy surfacepassivationbyquantumexclusiononthequantumefficiencyandstabilityofdeltadopedccdsandcmosimagesensorsinspace
AT toddjones surfacepassivationbyquantumexclusiononthequantumefficiencyandstabilityofdeltadopedccdsandcmosimagesensorsinspace
AT charlesshapiro surfacepassivationbyquantumexclusiononthequantumefficiencyandstabilityofdeltadopedccdsandcmosimagesensorsinspace
AT nathanbush surfacepassivationbyquantumexclusiononthequantumefficiencyandstabilityofdeltadopedccdsandcmosimagesensorsinspace
AT shoulehnikzad surfacepassivationbyquantumexclusiononthequantumefficiencyandstabilityofdeltadopedccdsandcmosimagesensorsinspace
AT davidmorris surfacepassivationbyquantumexclusiononthequantumefficiencyandstabilityofdeltadopedccdsandcmosimagesensorsinspace
AT katherinelawrie surfacepassivationbyquantumexclusiononthequantumefficiencyandstabilityofdeltadopedccdsandcmosimagesensorsinspace
AT jesperskottfelt surfacepassivationbyquantumexclusiononthequantumefficiencyandstabilityofdeltadopedccdsandcmosimagesensorsinspace