Dendrobium alkaloids decrease Aβ by regulating α- and β-secretases in hippocampal neurons of SD rats

Background Alzheimer’s disease (AD) is the primary cause of dementia in the elderly. The imbalance between production and clearance of amyloid β (Aβ) is a very early, often initiating factor in AD. Dendrobium nobile Lindl. alkaloids (DNLA) extracted from a Chinese medicinal herb, which have been sho...

Full description

Bibliographic Details
Main Authors: Juan Huang, Nanqu Huang, Minghui Zhang, Jing Nie, Yunyan Xu, Qin Wu, Jingshan Shi
Format: Article
Language:English
Published: PeerJ Inc. 2019-09-01
Series:PeerJ
Subjects:
Online Access:https://peerj.com/articles/7627.pdf
Description
Summary:Background Alzheimer’s disease (AD) is the primary cause of dementia in the elderly. The imbalance between production and clearance of amyloid β (Aβ) is a very early, often initiating factor in AD. Dendrobium nobile Lindl. alkaloids (DNLA) extracted from a Chinese medicinal herb, which have been shown to have anti-aging effects, protected against neuronal impairment in vivo and in vitro. Moreover, we confirmed that DNLA can improve learning and memory function in elderly normal mice, indicating that DNLA has potential health benefits. However, the underlying mechanism is unclear. Therefore, we further explored the effect of DNLA on neurons, which is closely related to learning and memory, based on Aβ. Methods We exposed cultured hippocampal neurons to DNLA to investigate the effect of DNLA on Aβ in vitro. Cell viability was evaluated by MTT assays. Proteins were analyzed by Western blot analysis. Results The cell viability of hippocampal neurons was not changed significantly after treatment with DNLA. But DNLA reduced the protein expression of amyloid precursor protein (APP), disintegrin and metalloprotease 10 (ADAM10), β-site APP cleaving enzyme 1 (BACE1) and Aβ1–42 of hippocampal neurons in rats and increased the protein expression of ADAM17. Conclusions DNLA decreases Aβ by regulating α- and β-secretase in hippocampal neurons of SD rats.
ISSN:2167-8359