A Tabular Variational Auto Encoder-Based Hybrid Model for Imbalanced Data Classification With Feature Selection
Cancer is the deadliest disease in humankind. Ovarian Cancer (OC) is important among female-specific cancers. Epithelial Ovarian Cancer (EOC) is the most commonly occurring subtype of OC. The disease is identified in later stages due to the unrevealed symptoms in the early stages. Gene Expression ex...
主要な著者: | Asha Abraham, Habeeb Shaik Mohideen, R. Kayalvizhi |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
IEEE
2023-01-01
|
シリーズ: | IEEE Access |
主題: | |
オンライン・アクセス: | https://ieeexplore.ieee.org/document/10304147/ |
類似資料
-
Comparison of tabular synthetic data generation techniques using propensity and cluster log metric
著者:: Aryan Pathare, 等
出版事項: (2023-11-01) -
Optimized LightGBM Power Fingerprint Identification Based on Entropy Features
著者:: Lin Lin, 等
出版事項: (2022-10-01) -
Machine Learning Classifiers and Data Synthesis Techniques to Tackle with Highly Imbalanced COVID-19 Data
著者:: Avaz Naghipour, 等
出版事項: (2024-12-01) -
Optimizing Coronary Artery Disease Diagnosis: A Heuristic Approach Using Robust Data Preprocessing and Automated Hyperparameter Tuning of eXtreme Gradient Boosting
著者:: J. Jasmine Gabriel, 等
出版事項: (2023-01-01) -
Short-term prediction of horizontal winds in the mesosphere and lower thermosphere over coastal Peru using a hybrid model
著者:: Christian Mauricio, 等
出版事項: (2024-09-01)