Hierarchical Inference of the Lensing Convergence from Photometric Catalogs with Bayesian Graph Neural Networks

We present a Bayesian graph neural network (BGNN) that can estimate the weak lensing convergence ( κ ) from photometric measurements of galaxies along a given line of sight (LOS). The method is of particular interest in strong gravitational time-delay cosmography (TDC), where characterizing the “ext...

Повний опис

Бібліографічні деталі
Автори: Ji Won Park, Simon Birrer, Madison Ueland, Miles Cranmer, Adriano Agnello, Sebastian Wagner-Carena, Philip J. Marshall, Aaron Roodman, the LSST Dark Energy Science Collaboration
Формат: Стаття
Мова:English
Опубліковано: IOP Publishing 2023-01-01
Серія:The Astrophysical Journal
Предмети:
Онлайн доступ:https://doi.org/10.3847/1538-4357/acdc25