Summary: | Using moderate electric field (MEF) techniques, Ohmic heating (OH) provides the rapid and uniform heating of food products by applying electric fields to them. A range of theoretical Ohmic heating models have been studied by researchers, but model validation and comparisons using experimental data and model development using system identification techniques from experimental data have not been evaluated. In this work, numerical models, mathematical models, and system identification models for an MEF process were developed. The MEF models were developed and simulated using COMSOL and MATLAB/Simulink software. When simulated, the developed models showed a volumetric rise in the overall food temperature. It was found that upon the application of an electric field, the resultant temperature depends on the electrical conductivity, product temperature, and magnitude of the electric field. For this reason, a systematic approach was used to validate the developed models. Experimental data derived from a commercially available batch Ohmic heater from C-Tech Innovation were used to validate the simulated models. Validation, analysis, and model comparison were conducted to compare developed models with experimental data. The validated simulated model helped improve the understanding of the effect of different critical process parameters of foods with a range of initial conditions. The validated model could accurately predict the temperature of heating under varying electric fields and food products with different thermo–physical properties.
|