Fault Detection and Classification in Ring Power System With DG Penetration Using Hybrid CNN-LSTM
A modern electric power system integrated with advanced technologies such as sensors and smart meters is referred to as a “smart grids”, aimed at enhancing electrical power delivery efficiency and reliability. However, fault location and prediction can become challenging when d...
Hlavní autoři: | Ahmed Sami Alhanaf, Murtaza Farsadi, Hasan Huseyin Balik |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
IEEE
2024-01-01
|
Edice: | IEEE Access |
Témata: | |
On-line přístup: | https://ieeexplore.ieee.org/document/10508728/ |
Podobné jednotky
-
Intelligent Fault Detection and Classification Schemes for Smart Grids Based on Deep Neural Networks
Autor: Ahmed Sami Alhanaf, a další
Vydáno: (2023-11-01) -
Bearing fault diagnosis with parallel CNN and LSTM
Autor: Guanghua Fu, a další
Vydáno: (2024-01-01) -
Research on Wind Turbine Fault Detection Based on CNN-LSTM
Autor: Lin Qi, a další
Vydáno: (2024-09-01) -
Detection of Corona Faults in Switchgear by Using 1D-CNN, LSTM, and 1D-CNN-LSTM Methods
Autor: Yaseen Ahmed Mohammed Alsumaidaee, a další
Vydáno: (2023-03-01) -
Open-Circuit Fault Detection and Classification of Modular Multilevel Converters in High Voltage Direct Current Systems (MMC-HVDC) with Long Short-Term Memory (LSTM) Method
Autor: Qinghua Wang, a další
Vydáno: (2021-06-01)