On finite-by-nilpotent profinite groups

Let $\gamma_n=[x_1,\ldots,x_n]$ be the $n$th lower central word‎. ‎Suppose that $G$ is a profinite group‎ ‎where the conjugacy classes $x^{\gamma_n(G)}$ contains less than $2^{\aleph_0}$‎ ‎elements‎ ‎for any $x \in G$‎. ‎We prove that then $\gamma_{n+1}(G)$ has finite order‎. ‎This generalizes the m...

Full description

Bibliographic Details
Main Authors: Eloisa Detomi, Marta Morigi
Format: Article
Language:English
Published: University of Isfahan 2020-12-01
Series:International Journal of Group Theory
Subjects:
Online Access:https://ijgt.ui.ac.ir/article_24082_41ac893d8fe29fcd71cc231d5864a1ef.pdf