Temperature effect on water dynamics in tetramer phosphofructokinase matrix and the super-arrhenius respiration rate
Abstract Advances in understanding the temperature effect on water dynamics in cellular respiration are important for the modeling of integrated energy processes and metabolic rates. For more than half a century, experimental studies have contributed to the understanding of the catalytic role of wat...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2021-01-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-020-79271-5 |