Screening for Obstructive Sleep Apnea Risk by Using Machine Learning Approaches and Anthropometric Features
Obstructive sleep apnea (OSA) is a global health concern and is typically diagnosed using in-laboratory polysomnography (PSG). However, PSG is highly time-consuming and labor-intensive. We, therefore, developed machine learning models based on easily accessed anthropometric features to screen for th...
Main Authors: | , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-11-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/22/22/8630 |