miR-132/212 Impairs Cardiomyocytes Contractility in the Failing Heart by Suppressing SERCA2a

Compromised cardiac function is a hallmark for heart failure, mostly appearing as decreased contractile capacity due to dysregulated calcium handling. Unfortunately, the underlying mechanism causing impaired calcium handling is still not fully understood. Previously the miR-132/212 family was identi...

Full description

Bibliographic Details
Main Authors: Zhiyong Lei, Christine Wahlquist, Hamid el Azzouzi, Janine C. Deddens, Diederik Kuster, Alain van Mil, Agustin Rojas-Munoz, Manon M. Huibers, Mark Mercola, Roel de Weger, Jolanda Van der Velden, Junjie Xiao, Pieter A. Doevendans, Joost P. G. Sluijter
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-03-01
Series:Frontiers in Cardiovascular Medicine
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fcvm.2021.592362/full
_version_ 1818619707024998400
author Zhiyong Lei
Zhiyong Lei
Christine Wahlquist
Hamid el Azzouzi
Janine C. Deddens
Diederik Kuster
Alain van Mil
Alain van Mil
Agustin Rojas-Munoz
Manon M. Huibers
Mark Mercola
Roel de Weger
Jolanda Van der Velden
Junjie Xiao
Junjie Xiao
Pieter A. Doevendans
Pieter A. Doevendans
Pieter A. Doevendans
Joost P. G. Sluijter
Joost P. G. Sluijter
author_facet Zhiyong Lei
Zhiyong Lei
Christine Wahlquist
Hamid el Azzouzi
Janine C. Deddens
Diederik Kuster
Alain van Mil
Alain van Mil
Agustin Rojas-Munoz
Manon M. Huibers
Mark Mercola
Roel de Weger
Jolanda Van der Velden
Junjie Xiao
Junjie Xiao
Pieter A. Doevendans
Pieter A. Doevendans
Pieter A. Doevendans
Joost P. G. Sluijter
Joost P. G. Sluijter
author_sort Zhiyong Lei
collection DOAJ
description Compromised cardiac function is a hallmark for heart failure, mostly appearing as decreased contractile capacity due to dysregulated calcium handling. Unfortunately, the underlying mechanism causing impaired calcium handling is still not fully understood. Previously the miR-132/212 family was identified as a regulator of cardiac function in the failing mouse heart, and pharmaceutically inhibition of miR-132 is beneficial for heart failure. In this study, we further investigated the molecular mechanisms of miR-132/212 in modulating cardiomyocyte contractility in the context of the pathological progression of heart failure. We found that upregulated miR-132/212 expressions in all examined hypertrophic heart failure mice models. The overexpression of miR-132/212 prolongs calcium decay in isolated neonatal rat cardiomyocytes, whereas cardiomyocytes isolated from miR-132/212 KO mice display enhanced contractility in comparison to wild type controls. In response to chronic pressure-overload, miR-132/212 KO mice exhibited a blunted deterioration of cardiac function. Using a combination of biochemical approaches and in vitro assays, we confirmed that miR-132/212 regulates SERCA2a by targeting the 3′-end untranslated region of SERCA2a. Additionally, we also confirmed PTEN as a direct target of miR-132/212 and potentially participates in the cardiac response to miR132/212. In end-stage heart failure patients, miR-132/212 is upregulated and correlates with reduced SERCA2a expression. The up-regulation of miR-132/212 in heart failure impairs cardiac contractile function by targeting SERCA2a, suggesting that pharmaceutical inhibition of miR-132/212 might be a promising therapeutic approach to promote cardiac function in heart failure patients.
first_indexed 2024-12-16T17:41:45Z
format Article
id doaj.art-e8911eb526d44c128a96bcd2108ada95
institution Directory Open Access Journal
issn 2297-055X
language English
last_indexed 2024-12-16T17:41:45Z
publishDate 2021-03-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Cardiovascular Medicine
spelling doaj.art-e8911eb526d44c128a96bcd2108ada952022-12-21T22:22:35ZengFrontiers Media S.A.Frontiers in Cardiovascular Medicine2297-055X2021-03-01810.3389/fcvm.2021.592362592362miR-132/212 Impairs Cardiomyocytes Contractility in the Failing Heart by Suppressing SERCA2aZhiyong Lei0Zhiyong Lei1Christine Wahlquist2Hamid el Azzouzi3Janine C. Deddens4Diederik Kuster5Alain van Mil6Alain van Mil7Agustin Rojas-Munoz8Manon M. Huibers9Mark Mercola10Roel de Weger11Jolanda Van der Velden12Junjie Xiao13Junjie Xiao14Pieter A. Doevendans15Pieter A. Doevendans16Pieter A. Doevendans17Joost P. G. Sluijter18Joost P. G. Sluijter19Experimental Cardiology Laboratory, Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, NetherlandsDivision Lab, Central Diagnosis Laboratory Research, University Medical Center Utrecht, Utrecht, NetherlandsDepartment of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford Cardiovascular Institute, Stanford, CA, United StatesExperimental Cardiology Laboratory, Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, NetherlandsExperimental Cardiology Laboratory, Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, NetherlandsDepartment of Physiology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, NetherlandsExperimental Cardiology Laboratory, Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, NetherlandsUniversity Medical Center Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, University Medical Center Utrecht, Utrecht, NetherlandsDepartment of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford Cardiovascular Institute, Stanford, CA, United StatesDepartment of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, NetherlandsDepartment of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford Cardiovascular Institute, Stanford, CA, United StatesDepartment of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, NetherlandsDepartment of Physiology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, NetherlandsRegeneration and Ageing Lab, School of Life Science, Shanghai University, Shanghai, ChinaSchool of Medicine, Shanghai University, Shanghai, ChinaExperimental Cardiology Laboratory, Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, NetherlandsNetherlands Heart Institute, Utrecht, Netherlands0Central Military Hospital Utrecht, Utrecht, NetherlandsExperimental Cardiology Laboratory, Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, NetherlandsUniversity Medical Center Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, University Medical Center Utrecht, Utrecht, NetherlandsCompromised cardiac function is a hallmark for heart failure, mostly appearing as decreased contractile capacity due to dysregulated calcium handling. Unfortunately, the underlying mechanism causing impaired calcium handling is still not fully understood. Previously the miR-132/212 family was identified as a regulator of cardiac function in the failing mouse heart, and pharmaceutically inhibition of miR-132 is beneficial for heart failure. In this study, we further investigated the molecular mechanisms of miR-132/212 in modulating cardiomyocyte contractility in the context of the pathological progression of heart failure. We found that upregulated miR-132/212 expressions in all examined hypertrophic heart failure mice models. The overexpression of miR-132/212 prolongs calcium decay in isolated neonatal rat cardiomyocytes, whereas cardiomyocytes isolated from miR-132/212 KO mice display enhanced contractility in comparison to wild type controls. In response to chronic pressure-overload, miR-132/212 KO mice exhibited a blunted deterioration of cardiac function. Using a combination of biochemical approaches and in vitro assays, we confirmed that miR-132/212 regulates SERCA2a by targeting the 3′-end untranslated region of SERCA2a. Additionally, we also confirmed PTEN as a direct target of miR-132/212 and potentially participates in the cardiac response to miR132/212. In end-stage heart failure patients, miR-132/212 is upregulated and correlates with reduced SERCA2a expression. The up-regulation of miR-132/212 in heart failure impairs cardiac contractile function by targeting SERCA2a, suggesting that pharmaceutical inhibition of miR-132/212 might be a promising therapeutic approach to promote cardiac function in heart failure patients.https://www.frontiersin.org/articles/10.3389/fcvm.2021.592362/fullmiR-132/212 familycardiac contractilityheart failuremyocardial infarctionknockout mice
spellingShingle Zhiyong Lei
Zhiyong Lei
Christine Wahlquist
Hamid el Azzouzi
Janine C. Deddens
Diederik Kuster
Alain van Mil
Alain van Mil
Agustin Rojas-Munoz
Manon M. Huibers
Mark Mercola
Roel de Weger
Jolanda Van der Velden
Junjie Xiao
Junjie Xiao
Pieter A. Doevendans
Pieter A. Doevendans
Pieter A. Doevendans
Joost P. G. Sluijter
Joost P. G. Sluijter
miR-132/212 Impairs Cardiomyocytes Contractility in the Failing Heart by Suppressing SERCA2a
Frontiers in Cardiovascular Medicine
miR-132/212 family
cardiac contractility
heart failure
myocardial infarction
knockout mice
title miR-132/212 Impairs Cardiomyocytes Contractility in the Failing Heart by Suppressing SERCA2a
title_full miR-132/212 Impairs Cardiomyocytes Contractility in the Failing Heart by Suppressing SERCA2a
title_fullStr miR-132/212 Impairs Cardiomyocytes Contractility in the Failing Heart by Suppressing SERCA2a
title_full_unstemmed miR-132/212 Impairs Cardiomyocytes Contractility in the Failing Heart by Suppressing SERCA2a
title_short miR-132/212 Impairs Cardiomyocytes Contractility in the Failing Heart by Suppressing SERCA2a
title_sort mir 132 212 impairs cardiomyocytes contractility in the failing heart by suppressing serca2a
topic miR-132/212 family
cardiac contractility
heart failure
myocardial infarction
knockout mice
url https://www.frontiersin.org/articles/10.3389/fcvm.2021.592362/full
work_keys_str_mv AT zhiyonglei mir132212impairscardiomyocytescontractilityinthefailingheartbysuppressingserca2a
AT zhiyonglei mir132212impairscardiomyocytescontractilityinthefailingheartbysuppressingserca2a
AT christinewahlquist mir132212impairscardiomyocytescontractilityinthefailingheartbysuppressingserca2a
AT hamidelazzouzi mir132212impairscardiomyocytescontractilityinthefailingheartbysuppressingserca2a
AT janinecdeddens mir132212impairscardiomyocytescontractilityinthefailingheartbysuppressingserca2a
AT diederikkuster mir132212impairscardiomyocytescontractilityinthefailingheartbysuppressingserca2a
AT alainvanmil mir132212impairscardiomyocytescontractilityinthefailingheartbysuppressingserca2a
AT alainvanmil mir132212impairscardiomyocytescontractilityinthefailingheartbysuppressingserca2a
AT agustinrojasmunoz mir132212impairscardiomyocytescontractilityinthefailingheartbysuppressingserca2a
AT manonmhuibers mir132212impairscardiomyocytescontractilityinthefailingheartbysuppressingserca2a
AT markmercola mir132212impairscardiomyocytescontractilityinthefailingheartbysuppressingserca2a
AT roeldeweger mir132212impairscardiomyocytescontractilityinthefailingheartbysuppressingserca2a
AT jolandavandervelden mir132212impairscardiomyocytescontractilityinthefailingheartbysuppressingserca2a
AT junjiexiao mir132212impairscardiomyocytescontractilityinthefailingheartbysuppressingserca2a
AT junjiexiao mir132212impairscardiomyocytescontractilityinthefailingheartbysuppressingserca2a
AT pieteradoevendans mir132212impairscardiomyocytescontractilityinthefailingheartbysuppressingserca2a
AT pieteradoevendans mir132212impairscardiomyocytescontractilityinthefailingheartbysuppressingserca2a
AT pieteradoevendans mir132212impairscardiomyocytescontractilityinthefailingheartbysuppressingserca2a
AT joostpgsluijter mir132212impairscardiomyocytescontractilityinthefailingheartbysuppressingserca2a
AT joostpgsluijter mir132212impairscardiomyocytescontractilityinthefailingheartbysuppressingserca2a