Discrete states of a protein interaction network govern interphase and mitotic microtubule dynamics.
The cytoplasm of eukaryotic cells is thought to adopt discrete "states" corresponding to different steady states of protein networks that govern changes in subcellular organization. For example, in Xenopus eggs, the interphase to mitosis transition is induced solely by activation of cyclin...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2007-02-01
|
Series: | PLoS Biology |
Online Access: | http://europepmc.org/articles/PMC1769425?pdf=render |
_version_ | 1819153456403841024 |
---|---|
author | Philipp Niethammer Iva Kronja Stefanie Kandels-Lewis Sonja Rybina Philippe Bastiaens Eric Karsenti |
author_facet | Philipp Niethammer Iva Kronja Stefanie Kandels-Lewis Sonja Rybina Philippe Bastiaens Eric Karsenti |
author_sort | Philipp Niethammer |
collection | DOAJ |
description | The cytoplasm of eukaryotic cells is thought to adopt discrete "states" corresponding to different steady states of protein networks that govern changes in subcellular organization. For example, in Xenopus eggs, the interphase to mitosis transition is induced solely by activation of cyclin-dependent kinase 1 (CDK1) that phosphorylates many proteins leading to a reorganization of the nucleus and assembly of the mitotic spindle. Among these changes, the large array of stable microtubules that exists in interphase is replaced by short, highly dynamic microtubules in metaphase. Using a new visual immunoprecipitation assay that quantifies pairwise protein interactions in a non-perturbing manner in Xenopus egg extracts, we reveal the existence of a network of interactions between a series of microtubule-associated proteins (MAPs). In interphase, tubulin interacts with XMAP215, which is itself interacting with XKCM1, which connects to APC, EB1, and CLIP170. In mitosis, tubulin interacts with XMAP215, which is connected to EB1. We show that in interphase, microtubules are stable because the catastrophe-promoting activity of XKCM1 is inhibited by its interactions with the other MAPs. In mitosis, microtubules are short and dynamic because XKCM1 is free and has a strong destabilizing activity. In this case, the interaction of XMAP215 with EB1 is required to counteract the strong activity of XKCM1. This provides the beginning of a biochemical description of the notion of "cytoplasmic states" regarding the microtubule system. |
first_indexed | 2024-12-22T15:05:28Z |
format | Article |
id | doaj.art-e899bf120aed44d9ada8c7b2c22bfb6f |
institution | Directory Open Access Journal |
issn | 1544-9173 1545-7885 |
language | English |
last_indexed | 2024-12-22T15:05:28Z |
publishDate | 2007-02-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS Biology |
spelling | doaj.art-e899bf120aed44d9ada8c7b2c22bfb6f2022-12-21T18:22:00ZengPublic Library of Science (PLoS)PLoS Biology1544-91731545-78852007-02-0152e2910.1371/journal.pbio.0050029Discrete states of a protein interaction network govern interphase and mitotic microtubule dynamics.Philipp NiethammerIva KronjaStefanie Kandels-LewisSonja RybinaPhilippe BastiaensEric KarsentiThe cytoplasm of eukaryotic cells is thought to adopt discrete "states" corresponding to different steady states of protein networks that govern changes in subcellular organization. For example, in Xenopus eggs, the interphase to mitosis transition is induced solely by activation of cyclin-dependent kinase 1 (CDK1) that phosphorylates many proteins leading to a reorganization of the nucleus and assembly of the mitotic spindle. Among these changes, the large array of stable microtubules that exists in interphase is replaced by short, highly dynamic microtubules in metaphase. Using a new visual immunoprecipitation assay that quantifies pairwise protein interactions in a non-perturbing manner in Xenopus egg extracts, we reveal the existence of a network of interactions between a series of microtubule-associated proteins (MAPs). In interphase, tubulin interacts with XMAP215, which is itself interacting with XKCM1, which connects to APC, EB1, and CLIP170. In mitosis, tubulin interacts with XMAP215, which is connected to EB1. We show that in interphase, microtubules are stable because the catastrophe-promoting activity of XKCM1 is inhibited by its interactions with the other MAPs. In mitosis, microtubules are short and dynamic because XKCM1 is free and has a strong destabilizing activity. In this case, the interaction of XMAP215 with EB1 is required to counteract the strong activity of XKCM1. This provides the beginning of a biochemical description of the notion of "cytoplasmic states" regarding the microtubule system.http://europepmc.org/articles/PMC1769425?pdf=render |
spellingShingle | Philipp Niethammer Iva Kronja Stefanie Kandels-Lewis Sonja Rybina Philippe Bastiaens Eric Karsenti Discrete states of a protein interaction network govern interphase and mitotic microtubule dynamics. PLoS Biology |
title | Discrete states of a protein interaction network govern interphase and mitotic microtubule dynamics. |
title_full | Discrete states of a protein interaction network govern interphase and mitotic microtubule dynamics. |
title_fullStr | Discrete states of a protein interaction network govern interphase and mitotic microtubule dynamics. |
title_full_unstemmed | Discrete states of a protein interaction network govern interphase and mitotic microtubule dynamics. |
title_short | Discrete states of a protein interaction network govern interphase and mitotic microtubule dynamics. |
title_sort | discrete states of a protein interaction network govern interphase and mitotic microtubule dynamics |
url | http://europepmc.org/articles/PMC1769425?pdf=render |
work_keys_str_mv | AT philippniethammer discretestatesofaproteininteractionnetworkgoverninterphaseandmitoticmicrotubuledynamics AT ivakronja discretestatesofaproteininteractionnetworkgoverninterphaseandmitoticmicrotubuledynamics AT stefaniekandelslewis discretestatesofaproteininteractionnetworkgoverninterphaseandmitoticmicrotubuledynamics AT sonjarybina discretestatesofaproteininteractionnetworkgoverninterphaseandmitoticmicrotubuledynamics AT philippebastiaens discretestatesofaproteininteractionnetworkgoverninterphaseandmitoticmicrotubuledynamics AT erickarsenti discretestatesofaproteininteractionnetworkgoverninterphaseandmitoticmicrotubuledynamics |