Heterogeneous Graph Purification Network: Purifying Noisy Heterogeneity without Metapaths
Heterogeneous graph neural networks (HGNNs) deliver the powerful capability to model many complex systems in real-world scenarios by embedding rich structural and semantic information of a heterogeneous graph into low-dimensional representations. However, existing HGNNs encounter great difficulty in...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-03-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/13/6/3989 |