Negative-Sample-Free Contrastive Self-Supervised Learning for Electroencephalogram-Based Motor Imagery Classification

Motor imagery-based brain-computer interface (MI-BCI) systems convert user intentions into computer commands, aiding the communication and rehabilitation of individuals with motor disabilities. Traditional MI classification relies on supervised learning; however, it faces challenges in acquiring lar...

全面介紹

書目詳細資料
Main Authors: In-Nea Wang, Choel-Hui Lee, Hakseung Kim, Dong-Joo Kim
格式: Article
語言:English
出版: IEEE 2024-01-01
叢編:IEEE Access
主題:
在線閱讀:https://ieeexplore.ieee.org/document/10680037/