Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system
We consider the following Lotka-Volterra predator-prey system with two delays:$x'(t) = x(t) [r_1 - ax(t- \tau_1) - by(t)]$$y'(t) = y(t) [-r_2 + cx(t) - dy(t- \tau_2)]$ (E)We show that a positive equilibrium of system (E) is globally asymptotically stable for small delays. Critical values...
Hoofdauteurs: | , , |
---|---|
Formaat: | Artikel |
Taal: | English |
Gepubliceerd in: |
AIMS Press
2005-10-01
|
Reeks: | Mathematical Biosciences and Engineering |
Onderwerpen: | |
Online toegang: | https://www.aimspress.com/article/doi/10.3934/mbe.2006.3.173 |