An Interpretable and Scalable Recommendation Method Based on Network Embedding
Matrix factorization is a widely used technique in recommender systems. However, its performance is often affected by the sparsity and the scalability. To address the above-mentioned problem, we propose an interpretable and scalable recommendation method based on network embedding (ISRM_NE) in this...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2019-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8613775/ |